Energy usage inside buildings is a critical problem, especially considering high loads such as Heating, Ventilation and Air Conditioning (HVAC) systems: around 50% of the buildings’ energy demand resides in HVAC usage which causes a significant waste of energy resources due to improper uses. Usage awareness and efficient management have the potential to reduce related costs. However, strict saving policies may contrast with users’ comfort. In this sense, this paper proposes a multi-user multi-room smart energy management approach where a trade-off between the energy cost and the users’ thermal comfort is achieved. The proposed user-centric approach takes advantage of the novel paradigm of the Social Internet of Things to leverage a social consciousness and allow automated interactions between objects. Accordingly, the system automatically obtains the thermal profiles of both rooms and users. All these profiles are continuously updated based on the system experience and are then analysed through an optimization model to drive the selection of the most appropriate working times for HVACs. Experimental results in a real environment demonstrated the cognitive behaviour of the system which can adapt to users’ needs and ensure an acceptable comfort level while at the same time reducing energy costs compared to traditional usage.

A Cognitive Social IoT Approach for Smart Energy Management in a Real Environment

Marche C.
Primo
;
Soma G. G.;Nitti M.
Ultimo
2023-01-01

Abstract

Energy usage inside buildings is a critical problem, especially considering high loads such as Heating, Ventilation and Air Conditioning (HVAC) systems: around 50% of the buildings’ energy demand resides in HVAC usage which causes a significant waste of energy resources due to improper uses. Usage awareness and efficient management have the potential to reduce related costs. However, strict saving policies may contrast with users’ comfort. In this sense, this paper proposes a multi-user multi-room smart energy management approach where a trade-off between the energy cost and the users’ thermal comfort is achieved. The proposed user-centric approach takes advantage of the novel paradigm of the Social Internet of Things to leverage a social consciousness and allow automated interactions between objects. Accordingly, the system automatically obtains the thermal profiles of both rooms and users. All these profiles are continuously updated based on the system experience and are then analysed through an optimization model to drive the selection of the most appropriate working times for HVACs. Experimental results in a real environment demonstrated the cognitive behaviour of the system which can adapt to users’ needs and ensure an acceptable comfort level while at the same time reducing energy costs compared to traditional usage.
2023
Buildings
Costs
Energy consumption
Energy Management
Energy management
Genetic Algorithm
HVAC
Optimization
Optimization
Real Environment
Smart buildings
Social IoT
User Comfort
File in questo prodotto:
File Dimensione Formato  
A Cognitive Social IoT Approach for Smart Energy Management in a Real Environment.pdf

accesso aperto

Dimensione 1.68 MB
Formato Adobe PDF
1.68 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/359961
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact