Regularization of certain linear discrete ill-posed problems, as well as of certain regression problems, can be formulated as large-scale, possibly nonconvex, minimization problems, whose objective function is the sum of the p(th) power of the l(p)-norm of a fidelity term and the qth power of the lq-norm of a regularization term, with 0 < p,q = 2. We describe new restarted iterative solution methods that require less computer storage and execution time than the methods described by Huang et al. (BIT Numer. Math. 57,351-378, 14). The reduction in computer storage and execution time is achieved by periodic restarts of the method. Computed examples illustrate that restarting does not reduce the quality of the computed solutions.
Limited memory restarted l(p)-l(q) minimization methods using generalized Krylov subspaces
Buccini, A
;Reichel, L
2023-01-01
Abstract
Regularization of certain linear discrete ill-posed problems, as well as of certain regression problems, can be formulated as large-scale, possibly nonconvex, minimization problems, whose objective function is the sum of the p(th) power of the l(p)-norm of a fidelity term and the qth power of the lq-norm of a regularization term, with 0 < p,q = 2. We describe new restarted iterative solution methods that require less computer storage and execution time than the methods described by Huang et al. (BIT Numer. Math. 57,351-378, 14). The reduction in computer storage and execution time is achieved by periodic restarts of the method. Computed examples illustrate that restarting does not reduce the quality of the computed solutions.File | Dimensione | Formato | |
---|---|---|---|
s10444-023-10020-8.pdf
accesso aperto
Tipologia:
versione editoriale (VoR)
Dimensione
3.32 MB
Formato
Adobe PDF
|
3.32 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.