The provision to the users of realistic media contents is one of the main goals of future media services. The sense of reality perceived by the user can be enhanced by adding various sensorial effects to the conventional audio-visual content, through the stimulation of the five senses stimulation (sight, hearing, touch, smell and taste), the so-called multi-sensorial media (mulsemedia). To deliver the additional effects within a smart home (SH) environment, custom devices (e.g., air conditioning, lights) providing opportune smart features, are preferred to ad-hoc devices, often deployed in a specific context such as for example in gaming consoles. In the present study, a prototype for a mulsemedia TV application, implemented in a real smart home scenario, allowed the authors to assess the user's Quality of Experience (QoE) through test measurement campaign. The impact of specific sensory effects (i.e., light, airflow, vibration) on the user experience regarding the enhancement of sense of reality, annoyance, and intensity of the effects was investigated through subjective assessment. The need for multi sensorial QoE models is an important challenge for future research in this field, considering the time and cost of subjective quality assessments. Therefore, based on the subjective assessment results, this paper instantiates and validates a parametric QoE model for multi-sensorial TV in a SH scenario which indicates the relationship between the quality of audiovisual contents and user-perceived QoE for sensory effects applications.

A QoE Model for Mulsemedia TV in a Smart Home Environment

Jalal L.;Murroni M.
2023-01-01

Abstract

The provision to the users of realistic media contents is one of the main goals of future media services. The sense of reality perceived by the user can be enhanced by adding various sensorial effects to the conventional audio-visual content, through the stimulation of the five senses stimulation (sight, hearing, touch, smell and taste), the so-called multi-sensorial media (mulsemedia). To deliver the additional effects within a smart home (SH) environment, custom devices (e.g., air conditioning, lights) providing opportune smart features, are preferred to ad-hoc devices, often deployed in a specific context such as for example in gaming consoles. In the present study, a prototype for a mulsemedia TV application, implemented in a real smart home scenario, allowed the authors to assess the user's Quality of Experience (QoE) through test measurement campaign. The impact of specific sensory effects (i.e., light, airflow, vibration) on the user experience regarding the enhancement of sense of reality, annoyance, and intensity of the effects was investigated through subjective assessment. The need for multi sensorial QoE models is an important challenge for future research in this field, considering the time and cost of subjective quality assessments. Therefore, based on the subjective assessment results, this paper instantiates and validates a parametric QoE model for multi-sensorial TV in a SH scenario which indicates the relationship between the quality of audiovisual contents and user-perceived QoE for sensory effects applications.
2023
Multi sensorial media; Particle swarm optimization; Quality of experience; Sensory effects; Smart home
File in questo prodotto:
File Dimensione Formato  
A_QoE_Model_for_Mulsemedia_TV_in_a_Smart_Home_Environment.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 8.46 MB
Formato Adobe PDF
8.46 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
A QoE Model for Mulsemedia TV in Smart Home FINAL FILE.pdf

accesso aperto

Tipologia: versione post-print
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/361260
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact