This paper provides an overview of a one-dimensional modelling methodology for equipment and systems for heat to power conversion based on a staggered grid space discretization and implemented in the commercial software GT-SUITE®. Particular attention is given to a newly developed modelling procedure for twin-screw machines that is based on a chamber modelling approach and considers leakage paths between cells and with the casing. This methodology is then applied to a low-grade heat to power conversion system based on a Trilateral Flash Cycle (TFC) equipped with two parallel two-phase twin-screw expanders and a control valve upstream of the machines to adapt the fluid quality for an optimal expander operation. The standalone expander model is used to generate performance maps of the machine, which serve as inputs for the TFC system model. Parametric analyses are eventually carried out to assess the impact of several operating parameters of the TFC unit on the recovered power and cycle thermal efficiency. The study shows that the most influencing factors on the TFC system’s performance are the inlet temperature of the heat source and the expander speed. While the first depends on the topping industrial process, the expander speed can be used to optimize and control the TFC system operation also in transient or off-design operating conditions.

One-dimensional modelling of a trilateral flash cycle system with two-phase twin-screw expanders for industrial low-grade heat to power conversion

Matteo Marchionni;
2019-01-01

Abstract

This paper provides an overview of a one-dimensional modelling methodology for equipment and systems for heat to power conversion based on a staggered grid space discretization and implemented in the commercial software GT-SUITE®. Particular attention is given to a newly developed modelling procedure for twin-screw machines that is based on a chamber modelling approach and considers leakage paths between cells and with the casing. This methodology is then applied to a low-grade heat to power conversion system based on a Trilateral Flash Cycle (TFC) equipped with two parallel two-phase twin-screw expanders and a control valve upstream of the machines to adapt the fluid quality for an optimal expander operation. The standalone expander model is used to generate performance maps of the machine, which serve as inputs for the TFC system model. Parametric analyses are eventually carried out to assess the impact of several operating parameters of the TFC unit on the recovered power and cycle thermal efficiency. The study shows that the most influencing factors on the TFC system’s performance are the inlet temperature of the heat source and the expander speed. While the first depends on the topping industrial process, the expander speed can be used to optimize and control the TFC system operation also in transient or off-design operating conditions.
2019
one-dimensional modelling; GT-SUITE®; energy conversion; positive displacement machine
File in questo prodotto:
File Dimensione Formato  
designs_2019_TFC_DYnMod.pdf

accesso aperto

Descrizione: articolo online
Tipologia: versione editoriale
Dimensione 3.33 MB
Formato Adobe PDF
3.33 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/361938
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact