The present study investigates the impact of copper doping on the thermoelectric properties of zinc selenide (ZnSe) nanoparticles synthesized by the hydrothermal method. Nanoparticle samples with varying copper concentrations were prepared and their thermoelectric performances were evaluated by measuring the electrical transport properties, the Seebeck coefficient, and extracting the power factor. The results demonstrate that the thermoelectric properties of Cu-doped ZnSe nanoparticles are significantly enhanced by doping, mainly as an effect of an improved electrical conductivity, providing a promising avenue for energy applications of these nanomaterials. To gain further insights into the fundamental mechanisms underlying the observed improvements in thermoelectric performance of the samples, the morphological, structural, and vibrational properties were characterized using a combination of scanning electron microscopy, X-ray diffraction, and Raman spectroscopy.

ZnSe Nanoparticles for Thermoelectrics: Impact of Cu-Doping

Demontis, V;Khan, NA;
2023-01-01

Abstract

The present study investigates the impact of copper doping on the thermoelectric properties of zinc selenide (ZnSe) nanoparticles synthesized by the hydrothermal method. Nanoparticle samples with varying copper concentrations were prepared and their thermoelectric performances were evaluated by measuring the electrical transport properties, the Seebeck coefficient, and extracting the power factor. The results demonstrate that the thermoelectric properties of Cu-doped ZnSe nanoparticles are significantly enhanced by doping, mainly as an effect of an improved electrical conductivity, providing a promising avenue for energy applications of these nanomaterials. To gain further insights into the fundamental mechanisms underlying the observed improvements in thermoelectric performance of the samples, the morphological, structural, and vibrational properties were characterized using a combination of scanning electron microscopy, X-ray diffraction, and Raman spectroscopy.
2023
Cu-doped ZnSe nanoparticles; Thermoelectrics
File in questo prodotto:
File Dimensione Formato  
crystals-13-00695-v4.pdf

accesso aperto

Tipologia: versione editoriale
Dimensione 3.24 MB
Formato Adobe PDF
3.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/362745
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact