The first fast ion experiments inWendelstein 7-X were performed in 2018. They are one of the first steps in demonstrating the optimised fast ion confinement of the stellarator. The fast ions were produced with a neutral beam injection (NBI) system and detected with infrared cameras (IR), a fast ion loss detector (FILD), fast ion charge exchange spectroscopy (FIDA), and post-mortem analysis of plasma facing components.The fast ion distribution function in the plasma and at the wall is being modelled with the ASCOT suite of codes. They calculate the ionisation of the injected neutrals and the consecutive slowing down process of the fast ions. The primary output of the code is the multidimensional fast ion distribution function within the plasma and the distribution of particle hit locations and velocities on the wall. Synthetic measurements based on ASCOT output are compared to experimental results to assess the validity of the modelling.This contribution presents an overview of the various fast ion measurements in 2018 and the current modelling status. The validation and data-analysis is on-going, but the wall load IR modelling already yield results that match with the experiments.

Validating the ASCOT modelling of NBI fast ions in Wendelstein 7-X stellarator

Jakubowski, M;Pisano, F;
2019-01-01

Abstract

The first fast ion experiments inWendelstein 7-X were performed in 2018. They are one of the first steps in demonstrating the optimised fast ion confinement of the stellarator. The fast ions were produced with a neutral beam injection (NBI) system and detected with infrared cameras (IR), a fast ion loss detector (FILD), fast ion charge exchange spectroscopy (FIDA), and post-mortem analysis of plasma facing components.The fast ion distribution function in the plasma and at the wall is being modelled with the ASCOT suite of codes. They calculate the ionisation of the injected neutrals and the consecutive slowing down process of the fast ions. The primary output of the code is the multidimensional fast ion distribution function within the plasma and the distribution of particle hit locations and velocities on the wall. Synthetic measurements based on ASCOT output are compared to experimental results to assess the validity of the modelling.This contribution presents an overview of the various fast ion measurements in 2018 and the current modelling status. The validation and data-analysis is on-going, but the wall load IR modelling already yield results that match with the experiments.
2019
Simulation methods and programs
Plasma diagnostics - charged-particle spectroscopy
Plasma diagnostics - interferometry, spectroscopy and imaging
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/362785
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 15
social impact