We study a nonlinear, nonlocal eigenvalue problem driven by the fractional p-Laplacian with an indefinite, singular weight chosen in an optimal class. We prove the existence of an unbounded sequence of positive variational eigenvalues and alternative characterizations of the first and second eigenvalues. Then, by means of such characterizations, we prove strict decreasing monotonicity of such eigenvalues with respect to the weight function.
Monotonicity of eigenvalues of the fractional p-Laplacian with singular weights
IANNIZZOTTO ANTONIO
2023-01-01
Abstract
We study a nonlinear, nonlocal eigenvalue problem driven by the fractional p-Laplacian with an indefinite, singular weight chosen in an optimal class. We prove the existence of an unbounded sequence of positive variational eigenvalues and alternative characterizations of the first and second eigenvalues. Then, by means of such characterizations, we prove strict decreasing monotonicity of such eigenvalues with respect to the weight function.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Iannizzotto TMNA.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
658.78 kB
Formato
Adobe PDF
|
658.78 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Iannizzotto-Mon (3).pdf
Open Access dal 27/02/2024
Tipologia:
versione post-print (AAM)
Dimensione
328.83 kB
Formato
Adobe PDF
|
328.83 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.