We study a nonlinear, nonlocal eigenvalue problem driven by the fractional p-Laplacian with an indefinite, singular weight chosen in an optimal class. We prove the existence of an unbounded sequence of positive variational eigenvalues and alternative characterizations of the first and second eigenvalues. Then, by means of such characterizations, we prove strict decreasing monotonicity of such eigenvalues with respect to the weight function.

Monotonicity of eigenvalues of the fractional p-Laplacian with singular weights

IANNIZZOTTO ANTONIO
2023-01-01

Abstract

We study a nonlinear, nonlocal eigenvalue problem driven by the fractional p-Laplacian with an indefinite, singular weight chosen in an optimal class. We prove the existence of an unbounded sequence of positive variational eigenvalues and alternative characterizations of the first and second eigenvalues. Then, by means of such characterizations, we prove strict decreasing monotonicity of such eigenvalues with respect to the weight function.
2023
Fractional p-Laplacian; Eigenvalue problems; Singular weights
File in questo prodotto:
File Dimensione Formato  
Iannizzotto TMNA.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 658.78 kB
Formato Adobe PDF
658.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Iannizzotto-Mon (3).pdf

Open Access dal 27/02/2024

Tipologia: versione post-print (AAM)
Dimensione 328.83 kB
Formato Adobe PDF
328.83 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/362923
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact