The biasing of low noise amplifiers (LNA) is of paramount importance for the receivers of large radio telescopes. High stability, optimal trade-off between gain and noise figure, remote control, and mitigation of the radio frequency interferences (RFIs) are all desirable features in the choice of the electronic board devoted to power supply the LNAs. In this paper, we propose the design and characterization of a multilayer printed circuit board (PCB), named GAIA, able to meet all the aforementioned requirements. The GAIA board is a 3-Unit, four-layer, rack-mountable, programmable PCB for the remote biasing of the LNAs, with monitor and control capabilities, specifically designed to operate in the receivers of the 64-m diameter Sardinia Radio Telescope (SRT). We describe the architecture, layout, and measurements of the GAIA board. Our results show that the GAIA power supply provides high stability of the output bias voltages and, in comparison with the old analogic biasing board used so far in the SRT receivers, it shows comparable or better frequency stability, other than a remarkable mitigation of the RFIs.

A New Monitor and Control Power Supply PCB for Biasing LNAs of Large Radio Telescopes Receivers

Muntoni G.;Ghiani R.;Montisci G.
2023-01-01

Abstract

The biasing of low noise amplifiers (LNA) is of paramount importance for the receivers of large radio telescopes. High stability, optimal trade-off between gain and noise figure, remote control, and mitigation of the radio frequency interferences (RFIs) are all desirable features in the choice of the electronic board devoted to power supply the LNAs. In this paper, we propose the design and characterization of a multilayer printed circuit board (PCB), named GAIA, able to meet all the aforementioned requirements. The GAIA board is a 3-Unit, four-layer, rack-mountable, programmable PCB for the remote biasing of the LNAs, with monitor and control capabilities, specifically designed to operate in the receivers of the 64-m diameter Sardinia Radio Telescope (SRT). We describe the architecture, layout, and measurements of the GAIA board. Our results show that the GAIA power supply provides high stability of the output bias voltages and, in comparison with the old analogic biasing board used so far in the SRT receivers, it shows comparable or better frequency stability, other than a remarkable mitigation of the RFIs.
2023
Low noise amplifiers; Microcontrollers; Monitoring; Power supplies; Power supply board; Printed circuit board; Radio astronomy; Radio frequency interference; Radio telescopes; Receivers
File in questo prodotto:
File Dimensione Formato  
A_New_Monitor_and_Control_Power_Supply_PCB_for_Biasing_LNAs_of_Large_Radio_Telescopes_Receivers.pdf

accesso aperto

Tipologia: versione editoriale
Dimensione 5.2 MB
Formato Adobe PDF
5.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/364843
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact