Disorders of the lungs and airways are among the most common indications for diagnostic imaging in infants and children. Traditionally, chest radiograph has been the first-line imaging test for detecting these disorders and when cross-sectional imaging is necessary, computed tomography (CT) has typically been the next step. However, due to concerns about the potentially harmful effects of ionizing radiation, pediatric imaging in general has begun to shift away from CT toward magnetic resonance imaging (MRI) as a preferred modality. Several unique technical challenges of chest MRI, including motion artifact from respiratory and cardiac motion as well as low signal-to-noise ratios secondary to relatively low proton density in the lung have slowed this shift in thoracic imaging. However, technical advances in MRI in recent years, including developments in non-Cartesian MRI data sampling methods such as radial, spiral, and PROPELLER imaging and the development of ultrashort TE and zero TE sequences that render CT-like high-quality imaging with minimal motion artifact have allowed for a shift to MRI for evaluation of lung and large airways in centers with specialized expertise. This article presents a practical approach for radiologists in current practice to begin to consider MRI for evaluation of the pediatric lung and large airways and begin to implement it in their practices. The current role for MRI in the evaluation of disorders of the pediatric lung and large airways is reviewed, and example cases are presented. Challenges for MRI of the lung and large airways in children are discussed, practical tips for patient preparation including sedation are described, and imaging techniques suitable for current clinical practice are presented.
Magnetic Resonance Imaging of Pediatric Lungs and Airways: New Paradigm for Practical Daily Clinical Use
Ciet, PierluigiSecondo
Writing – Review & Editing
;
2024-01-01
Abstract
Disorders of the lungs and airways are among the most common indications for diagnostic imaging in infants and children. Traditionally, chest radiograph has been the first-line imaging test for detecting these disorders and when cross-sectional imaging is necessary, computed tomography (CT) has typically been the next step. However, due to concerns about the potentially harmful effects of ionizing radiation, pediatric imaging in general has begun to shift away from CT toward magnetic resonance imaging (MRI) as a preferred modality. Several unique technical challenges of chest MRI, including motion artifact from respiratory and cardiac motion as well as low signal-to-noise ratios secondary to relatively low proton density in the lung have slowed this shift in thoracic imaging. However, technical advances in MRI in recent years, including developments in non-Cartesian MRI data sampling methods such as radial, spiral, and PROPELLER imaging and the development of ultrashort TE and zero TE sequences that render CT-like high-quality imaging with minimal motion artifact have allowed for a shift to MRI for evaluation of lung and large airways in centers with specialized expertise. This article presents a practical approach for radiologists in current practice to begin to consider MRI for evaluation of the pediatric lung and large airways and begin to implement it in their practices. The current role for MRI in the evaluation of disorders of the pediatric lung and large airways is reviewed, and example cases are presented. Challenges for MRI of the lung and large airways in children are discussed, practical tips for patient preparation including sedation are described, and imaging techniques suitable for current clinical practice are presented.File | Dimensione | Formato | |
---|---|---|---|
MRI of Pediatric Lungs and Airways- New Paradigm for Practical Daily Clinical Use_JTI2023.pdf
embargo fino al 01/01/2025
Tipologia:
versione post-print (AAM)
Dimensione
1.37 MB
Formato
Adobe PDF
|
1.37 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.