This article presents the early results of synchronous multiwavelength observations of one of the brightest gamma-ray bursts (GRBs) GRB 160625B with the detailed continuous fast optical photometry of its optical counterpart obtained by MASTER and with hard X-ray and gamma-ray emission, obtained by the Lomonosov and Konus-Wind spacecraft. The detailed photometry led us to detect the quasi-periodical emission components in the intrinsic optical emission. As a result of our analysis of synchronous multiwavelength observations, we propose a three-stage collapse scenario for this long and bright GRB. We suggest that quasiperiodic fluctuations may be associated with forced precession of a self-gravitating rapidly rotating superdense body (spinar), whose evolution is determined by a powerful magnetic field. The spinar's mass allows it to collapse into a black hole at the end of evolution.
Three-stage Collapse of the Long Gamma-Ray Burst from GRB 160625B Prompt Multiwavelength Observations
Tsvetkova, A;
2023-01-01
Abstract
This article presents the early results of synchronous multiwavelength observations of one of the brightest gamma-ray bursts (GRBs) GRB 160625B with the detailed continuous fast optical photometry of its optical counterpart obtained by MASTER and with hard X-ray and gamma-ray emission, obtained by the Lomonosov and Konus-Wind spacecraft. The detailed photometry led us to detect the quasi-periodical emission components in the intrinsic optical emission. As a result of our analysis of synchronous multiwavelength observations, we propose a three-stage collapse scenario for this long and bright GRB. We suggest that quasiperiodic fluctuations may be associated with forced precession of a self-gravitating rapidly rotating superdense body (spinar), whose evolution is determined by a powerful magnetic field. The spinar's mass allows it to collapse into a black hole at the end of evolution.File | Dimensione | Formato | |
---|---|---|---|
2023_Lipunov_ApJ_943_181.pdf
accesso aperto
Tipologia:
versione editoriale
Dimensione
2.06 MB
Formato
Adobe PDF
|
2.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.