The effects of propofol, pentobarbital, alphaxalone, etomidate and diazepam on t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to membrane preparations from rat cerebral cortex were studied in the absence of gamma-aminobutyric acid (GABA). Addition of low concentrations (3-10 microM) of propofol to washed membrane preparations (devoid of GABA) markedly enhanced [35S]TBPS binding (maximal enhancement, 85%), whereas higher concentrations (50-100 microM) inhibited this parameter. Diazepam also enhanced [35S]TBPS binding in this preparation (maximal enhancement, 38%). In contrast, pentobarbital, alphaxalone and etomidate decreased [35S]TBPS binding in a concentration-dependent manner. The propofol-induced increase in [35S]TBPS binding in washed membranes was completely reversed by the addition of GABA at a concentration (0.3 microM) that alone did not modify [35S]TBPS binding (78% increase with 10 microM propofol alone, 33% decrease in the additional presence of GABA). The ability of GABA to reverse the effect of propofol on [35S]TBPS binding in washed membranes was shared by pentobarbital (200 microM) and alphaxalone (3 microM); etomidate (20 microM) only partially antagonized the effect of propofol. Diazepam at a concentration (30 microM) that alone had no effect on [35S]TBPS binding failed to modify the propofol-induced increase in [35S]TBPS binding, whereas at a concentration (3 microM) that alone increased [35S]TBPS binding the effect of diazepam was additive with that of propofol. The addition of bicuculline to washed membranes failed to abolish the increase in [35S]TBPS binding induced by propofol or diazepam, but completely antagonized the effects of pentobarbital, alphaxalone and etomidate.(ABSTRACT TRUNCATED AT 250 WORDS)

Effects of propofol, pentobarbital and alphaxalone on t-[35S]butylbicyclophosphoro-thionate binding in the rat cerebral cortex.

CONCAS, ALESSANDRA;
1994-01-01

Abstract

The effects of propofol, pentobarbital, alphaxalone, etomidate and diazepam on t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to membrane preparations from rat cerebral cortex were studied in the absence of gamma-aminobutyric acid (GABA). Addition of low concentrations (3-10 microM) of propofol to washed membrane preparations (devoid of GABA) markedly enhanced [35S]TBPS binding (maximal enhancement, 85%), whereas higher concentrations (50-100 microM) inhibited this parameter. Diazepam also enhanced [35S]TBPS binding in this preparation (maximal enhancement, 38%). In contrast, pentobarbital, alphaxalone and etomidate decreased [35S]TBPS binding in a concentration-dependent manner. The propofol-induced increase in [35S]TBPS binding in washed membranes was completely reversed by the addition of GABA at a concentration (0.3 microM) that alone did not modify [35S]TBPS binding (78% increase with 10 microM propofol alone, 33% decrease in the additional presence of GABA). The ability of GABA to reverse the effect of propofol on [35S]TBPS binding in washed membranes was shared by pentobarbital (200 microM) and alphaxalone (3 microM); etomidate (20 microM) only partially antagonized the effect of propofol. Diazepam at a concentration (30 microM) that alone had no effect on [35S]TBPS binding failed to modify the propofol-induced increase in [35S]TBPS binding, whereas at a concentration (3 microM) that alone increased [35S]TBPS binding the effect of diazepam was additive with that of propofol. The addition of bicuculline to washed membranes failed to abolish the increase in [35S]TBPS binding induced by propofol or diazepam, but completely antagonized the effects of pentobarbital, alphaxalone and etomidate.(ABSTRACT TRUNCATED AT 250 WORDS)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/37012
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact