Ammonium N-(pyridin-2-ylmethyl)oxamate (AmPicOxam), synthesized from O-methyl-N-(pyridin-2-ylmethyl)oxamate, was spectroscopically and structurally characterized and assayed as a novel precursor for the protection and consolidation of carbonate stone substrates. An in-depth characterization of treated and untreated biomicritic limestone and white Carrara marble samples was carried out by means of SEM microscopy, X-ray powder diffraction, helium pycnometry, determination of water transport properties, and pull-off tests. The improved solubility (1.00 M, 16.5% w/w) of the title compound with respect to ammonium oxalate (0.4 M, 5% w/w) results in the formation of a thicker protective coating of calcium oxalate (CaOx) dihydrate (weddellite) on marble and biomicrite samples after the treatment with 5% and 12% w/w water solutions, producing a reduction in the stone porosity and increased cohesion. Theoretical calculations were carried out at the DFT level to investigate both the electronic structure of the N-(pyridin-2-ylmethyl)oxamate anion and the hydrolysis reaction leading from AmPicOxam to CaOx.
Ammonium N-(pyridin-2-ylmethyl)oxamate (AmPicOxam): A Novel Precursor of Calcium Oxalate Coating for Carbonate Stone Substrates
Pintus, AnnaPrimo
;Aragoni, M. CarlaSecondo
;Caria, Veronica;Giacopetti, Laura;Lippolis, Vito;Meloni, Paola;Murgia, Simone;Podda, Enrico;Urru, Claudia;Arca, Massimiliano
Ultimo
2023-01-01
Abstract
Ammonium N-(pyridin-2-ylmethyl)oxamate (AmPicOxam), synthesized from O-methyl-N-(pyridin-2-ylmethyl)oxamate, was spectroscopically and structurally characterized and assayed as a novel precursor for the protection and consolidation of carbonate stone substrates. An in-depth characterization of treated and untreated biomicritic limestone and white Carrara marble samples was carried out by means of SEM microscopy, X-ray powder diffraction, helium pycnometry, determination of water transport properties, and pull-off tests. The improved solubility (1.00 M, 16.5% w/w) of the title compound with respect to ammonium oxalate (0.4 M, 5% w/w) results in the formation of a thicker protective coating of calcium oxalate (CaOx) dihydrate (weddellite) on marble and biomicrite samples after the treatment with 5% and 12% w/w water solutions, producing a reduction in the stone porosity and increased cohesion. Theoretical calculations were carried out at the DFT level to investigate both the electronic structure of the N-(pyridin-2-ylmethyl)oxamate anion and the hydrolysis reaction leading from AmPicOxam to CaOx.File | Dimensione | Formato | |
---|---|---|---|
molecules-28-05768.pdf
accesso aperto
Tipologia:
versione editoriale
Dimensione
4.16 MB
Formato
Adobe PDF
|
4.16 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.