Parkinson's disease (PD) diagnosis is still vulnerable to bias, and a definitive diagnosis often relies on post-mortem neuropathological diagnosis. In this regard, alpha-synuclein (αsyn)-specific in vivo biomarkers remain a critical unmet need, based on its relevance in the neuropathology. Specifically, content changes in αsyn species such as total (tot-αsyn), oligomeric (o-αsyn), and phosphorylated (p-αsyn) within the cerebrospinal fluid (CSF) and peripheral fluids (i.e., blood and saliva) have been proposed as PD biomarkers possibly reflecting the neuropathological outcome. Here, we measured the p-αsyn levels in the saliva from 15 PD patients along with tot-αsyn, o-αsyn and their ratios, and compared the results with those from 23 healthy subjects (HS), matched per age and sex. We also calculated the optimal cutoff values for different αsyn species to provide information about their capability to discriminate PD from HS. We found that p-αsyn was the most abundant alpha-synuclein species in the saliva. While p-αsyn concentration did not differ between PD and HS when adjusted for total salivary proteins, the ratio p-αsyn/tot-αsyn was largely lower in PD patients than in HS. Moreover, the concentration of o-αsyn was increased in the saliva of PD patients, and tot-αsyn did not differ between PD and HS. The ROC curves indicated that no single αsyn form or ratio could provide an accurate diagnosis of PD. On the other hand, the ratio of different items, namely p-αsyn/tot-αsyn and o-αsyn, yielded more satisfactory diagnostic accuracy, suggesting that the combined measure of different species in the saliva may show more promises as a diagnostic means for PD.

Combined measure of salivary alpha-synuclein species as diagnostic biomarker for Parkinson's disease

Angius, Fabrizio;Ercoli, Tommaso;Loy, Francesco;Palmas, Maria Francesca;Manzin, Aldo;Defazio, Giovanni;Carta, Anna R
2023-01-01

Abstract

Parkinson's disease (PD) diagnosis is still vulnerable to bias, and a definitive diagnosis often relies on post-mortem neuropathological diagnosis. In this regard, alpha-synuclein (αsyn)-specific in vivo biomarkers remain a critical unmet need, based on its relevance in the neuropathology. Specifically, content changes in αsyn species such as total (tot-αsyn), oligomeric (o-αsyn), and phosphorylated (p-αsyn) within the cerebrospinal fluid (CSF) and peripheral fluids (i.e., blood and saliva) have been proposed as PD biomarkers possibly reflecting the neuropathological outcome. Here, we measured the p-αsyn levels in the saliva from 15 PD patients along with tot-αsyn, o-αsyn and their ratios, and compared the results with those from 23 healthy subjects (HS), matched per age and sex. We also calculated the optimal cutoff values for different αsyn species to provide information about their capability to discriminate PD from HS. We found that p-αsyn was the most abundant alpha-synuclein species in the saliva. While p-αsyn concentration did not differ between PD and HS when adjusted for total salivary proteins, the ratio p-αsyn/tot-αsyn was largely lower in PD patients than in HS. Moreover, the concentration of o-αsyn was increased in the saliva of PD patients, and tot-αsyn did not differ between PD and HS. The ROC curves indicated that no single αsyn form or ratio could provide an accurate diagnosis of PD. On the other hand, the ratio of different items, namely p-αsyn/tot-αsyn and o-αsyn, yielded more satisfactory diagnostic accuracy, suggesting that the combined measure of different species in the saliva may show more promises as a diagnostic means for PD.
2023
Alpha-synuclein; Biomarkers; Parkinson’s disease; Saliva
File in questo prodotto:
File Dimensione Formato  
s00415-023-11893-x.pdf

accesso aperto

Tipologia: versione editoriale (VoR)
Dimensione 1 MB
Formato Adobe PDF
1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/372543
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact