New Hydroxyapatite-Bioactive Glass composites, xHA-(1-x)BG (x = 25, 50, and 75 wt %), are developed using HA and BGMS10 glass powders co-milled up to 2 h prior to Spark Plasma Sintering (SPS). Ball milling (BM) promoted the consolidation of HA-rich powders, whereas hindered the densification of 25HA-75BG samples. HA crystallite size is reduced from > 200 nm (unmilled) to 60 (x = 25 %) or 88 nm (x = 75 %) when using 2 h milled mixtures. Glass crystallization occurred in 75HA-25BG samples processed by SPS at 950 °C: a negligeable effect in the amount of the residual amorphous phase (12.3–13.3 wt %) is produced by BM, while changes are observed in the relative content of crystalline phases, with SiO2 increases from 8.5 to 13.1 wt %, whereas α- and β-CaSiO3 correspondingly decrease. Superior Young's modulus and Vickers hardness (130 GPa and 726, respectively) are obtained in HA rich products. Biological tests evidenced that the milling treatment does not determine negative consequences on cells viability.

Recent advances on innovative bioactive glass-hydroxyapatite composites for bone tissue applications: Processing, mechanical properties, and biological performance

Angioni D.;Orru' R.
;
Cao G.;
2023-01-01

Abstract

New Hydroxyapatite-Bioactive Glass composites, xHA-(1-x)BG (x = 25, 50, and 75 wt %), are developed using HA and BGMS10 glass powders co-milled up to 2 h prior to Spark Plasma Sintering (SPS). Ball milling (BM) promoted the consolidation of HA-rich powders, whereas hindered the densification of 25HA-75BG samples. HA crystallite size is reduced from > 200 nm (unmilled) to 60 (x = 25 %) or 88 nm (x = 75 %) when using 2 h milled mixtures. Glass crystallization occurred in 75HA-25BG samples processed by SPS at 950 °C: a negligeable effect in the amount of the residual amorphous phase (12.3–13.3 wt %) is produced by BM, while changes are observed in the relative content of crystalline phases, with SiO2 increases from 8.5 to 13.1 wt %, whereas α- and β-CaSiO3 correspondingly decrease. Superior Young's modulus and Vickers hardness (130 GPa and 726, respectively) are obtained in HA rich products. Biological tests evidenced that the milling treatment does not determine negative consequences on cells viability.
2023
Bioactive glass
Bone tissue engineering
Cellular tests
Composites
Hydroxyapatite
File in questo prodotto:
File Dimensione Formato  
Angioni_et_al_JECS_2023_recent_advances.pdf

accesso aperto

Descrizione: Versione finale articolo
Tipologia: versione editoriale (VoR)
Dimensione 4.24 MB
Formato Adobe PDF
4.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/375503
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact