Metal-mining exploitation has caused ecosystem degradation worldwide. Legacy wastes are often concentrated around former mines where monitoring and research works are mostly focused. Geochemical and physical weathering can affect metal-enriched sediment locations and their capacity to release metals at a catchment scale. This study investigated how fluvial geomorphology and soil geochemistry drive zinc and lead dispersion along the Nant Cwmnewyddion (Wales, UK). Sediments from different locations were sampled for geochemical and mineralogical investigations (portable X-ray fluorescence, scanning electron microscope, X-ray diffraction, and electron microprobe analysis). The suspended sediment fluxes in the streamwater were estimated at different streamflows to quantify the metal dispersion. Topographical and slope analysis allowed us to link sediment erosion with the exposure of primary sulphide minerals in the headwater. Zinc and lead entered the streamwater as aqueous phases or as suspended sediments. Secondary sources were localised in depositional stream areas due to topographical obstruction and a decrease in stream gradient. Sediment zinc and lead concentrations were lower in depositional areas and associated with Fe-oxide or phyllosilicates. Streamwater zinc and lead fluxes highlighted their mobility under high-flow conditions. This multi-disciplinary approach stressed the impact of the headwater mining work on the downstream catchment and provided a low-cost strategy to target sediment sampling via geomorphological observations.

Fluvial Morphology as a Driver of Lead and Zinc Geochemical Dispersion at a Catchment Scale

Onnis, P
;
2023-01-01

Abstract

Metal-mining exploitation has caused ecosystem degradation worldwide. Legacy wastes are often concentrated around former mines where monitoring and research works are mostly focused. Geochemical and physical weathering can affect metal-enriched sediment locations and their capacity to release metals at a catchment scale. This study investigated how fluvial geomorphology and soil geochemistry drive zinc and lead dispersion along the Nant Cwmnewyddion (Wales, UK). Sediments from different locations were sampled for geochemical and mineralogical investigations (portable X-ray fluorescence, scanning electron microscope, X-ray diffraction, and electron microprobe analysis). The suspended sediment fluxes in the streamwater were estimated at different streamflows to quantify the metal dispersion. Topographical and slope analysis allowed us to link sediment erosion with the exposure of primary sulphide minerals in the headwater. Zinc and lead entered the streamwater as aqueous phases or as suspended sediments. Secondary sources were localised in depositional stream areas due to topographical obstruction and a decrease in stream gradient. Sediment zinc and lead concentrations were lower in depositional areas and associated with Fe-oxide or phyllosilicates. Streamwater zinc and lead fluxes highlighted their mobility under high-flow conditions. This multi-disciplinary approach stressed the impact of the headwater mining work on the downstream catchment and provided a low-cost strategy to target sediment sampling via geomorphological observations.
2023
Soil geochemistry; Mine waste; Metal contamination; Geomorphology; Monitoring
File in questo prodotto:
File Dimensione Formato  
2023 Onnis et al (Fluvial and geochemistry).pdf

accesso aperto

Descrizione: Journal article on mining-impacted sediments, geomorpology, geochemistry, and mineralogy
Tipologia: versione editoriale
Dimensione 3.9 MB
Formato Adobe PDF
3.9 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/379983
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact