Ethylene, a biomarker widely employed for evaluating fruit ripening during storage, exists at extremely low concentrations. Therefore a gas sensor with high sensitivity and a sub-ppm detection limit is needed. In this work, porous Co3O4 nanorods were synthesized through a hydrothermal method involving Co(NO3)2, Na2C2O4, H2O and ethylene glycol (EG), followed by annealing at 400 degrees C in air. The surface of the porous Co3O4 nanorods was functionalized with Pt nanoparticles to enhance the ethylene sensing performance. The effect of Co3O4 surface functionalisation with Pt nanoparticles was investigated by adding different amounts of nanoparticles. The sensor's outstanding performance at the optimum working temperature of 250 degrees C is attributed to the synergy between the high catalytic activity of Pt nanoparticles and the extensive surface area of the porous Co3O4 nanorods. Compared to pure Co3O4, the 0.031 wt% Pt sensor showed better ethylene sensing performance with a response 3.4 times that of pristine Co3O4. The device also demonstrated high selectivity, repeatability, long-term stability and a detection limit of 0.13 ppm for ethylene, which is adequate for fruit quality monitoring. The gas sensing mechanism of porous Co3O4 nanorods and the influence of Pt decoration on sensor performance are discussed.

Eco-friendly facile synthesis of Co3O4-Pt nanorods for ethylene detection towards fruit quality monitoring

Tonezzer, M;Nguyen, V;
2023-01-01

Abstract

Ethylene, a biomarker widely employed for evaluating fruit ripening during storage, exists at extremely low concentrations. Therefore a gas sensor with high sensitivity and a sub-ppm detection limit is needed. In this work, porous Co3O4 nanorods were synthesized through a hydrothermal method involving Co(NO3)2, Na2C2O4, H2O and ethylene glycol (EG), followed by annealing at 400 degrees C in air. The surface of the porous Co3O4 nanorods was functionalized with Pt nanoparticles to enhance the ethylene sensing performance. The effect of Co3O4 surface functionalisation with Pt nanoparticles was investigated by adding different amounts of nanoparticles. The sensor's outstanding performance at the optimum working temperature of 250 degrees C is attributed to the synergy between the high catalytic activity of Pt nanoparticles and the extensive surface area of the porous Co3O4 nanorods. Compared to pure Co3O4, the 0.031 wt% Pt sensor showed better ethylene sensing performance with a response 3.4 times that of pristine Co3O4. The device also demonstrated high selectivity, repeatability, long-term stability and a detection limit of 0.13 ppm for ethylene, which is adequate for fruit quality monitoring. The gas sensing mechanism of porous Co3O4 nanorods and the influence of Pt decoration on sensor performance are discussed.
2023
Gas sensor; Cobalt oxide; Nanorods; Ethylene detection; Fruit quality monitoring
File in questo prodotto:
File Dimensione Formato  
Manuscript-Co3O4-NRs-revised_MT.pdf

accesso aperto

Tipologia: versione pre-print
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF Visualizza/Apri
1-s2.0-S0924424723004569-main_compressed.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 993.33 kB
Formato Adobe PDF
993.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/381063
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact