Reinforced Concrete (RC) technology is advancing towards new frontiers enhancing its sustainability and durability through innovative materials. In particular, the application of Glass Fiber Reinforced Polymer (GFRP) bars, in lieu of steel reinforcement, shows excellent performance, especially in aggressive environments. Nevertheless, current international design guidelines and standards tend to be rather conservative, especially concerning shear reinforcement. This element hinders the technology’s competitiveness, not only in terms of material consumption but also in construction efficiency. This research aims to conduct an analytical comparison and experimental validation of the formulations found in some international standards pertaining to shear capacity in a specific case. The focus is on scenarios involving reduced shear reinforcement and cases where the number of stirrups falls below the minimum recommended by these standards. In the sample beam tests, two distinct flexural GFRP reinforcement ratios were employed to evaluate their influence on shear capacity, leading to diverse failure mechanisms: rupture of longitudinal GFRP bars and concrete crushing. The experimental results were used to compare the North American ACI, French AFGC, and Italian CNR shear capacity design approaches in the case of reduced transversal reinforced ratio. Analytical capacity expressions of the standards above are discussed with some remarks aiming at structural optimization.

Analytical and experimental shear evaluation of GFRP-reinforced concrete beams

Fausto Mistretta
Primo
Methodology
;
Mario Lucio Puppio
Secondo
Writing – Original Draft Preparation
;
2023-01-01

Abstract

Reinforced Concrete (RC) technology is advancing towards new frontiers enhancing its sustainability and durability through innovative materials. In particular, the application of Glass Fiber Reinforced Polymer (GFRP) bars, in lieu of steel reinforcement, shows excellent performance, especially in aggressive environments. Nevertheless, current international design guidelines and standards tend to be rather conservative, especially concerning shear reinforcement. This element hinders the technology’s competitiveness, not only in terms of material consumption but also in construction efficiency. This research aims to conduct an analytical comparison and experimental validation of the formulations found in some international standards pertaining to shear capacity in a specific case. The focus is on scenarios involving reduced shear reinforcement and cases where the number of stirrups falls below the minimum recommended by these standards. In the sample beam tests, two distinct flexural GFRP reinforcement ratios were employed to evaluate their influence on shear capacity, leading to diverse failure mechanisms: rupture of longitudinal GFRP bars and concrete crushing. The experimental results were used to compare the North American ACI, French AFGC, and Italian CNR shear capacity design approaches in the case of reduced transversal reinforced ratio. Analytical capacity expressions of the standards above are discussed with some remarks aiming at structural optimization.
2023
GFRP; Reinforced concrete; Shear tests; Shear capacity models
File in questo prodotto:
File Dimensione Formato  
MAS s11527-023-02256-z.pdf

accesso aperto

Tipologia: versione editoriale
Dimensione 4.97 MB
Formato Adobe PDF
4.97 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/381943
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact