Every year, plant diseases cause a significant loss of valuable food crops around the world. The plant and crop disease management practice implemented in order to mitigate damages have changed considerably. Today, through the application of new information and communication technologies, it is possible to predict the onset or change in the severity of diseases using modern big data analysis techniques. In this paper, we present an analysis and classification of research studies conducted over the past decade that forecast the onset of disease at a pre-symptomatic stage (i.e., symptoms not visible to the naked eye) or at an early stage. We examine the specific approaches and methods adopted, pre-processing techniques and data used, performance metrics, and expected results, highlighting the issues encountered. The results of the study reveal that this practice is still in its infancy and that many barriers need to be overcome.

Forecasting Plant and Crop Disease: An Explorative Study on Current Algorithms

Fenu G.
Primo
;
Malloci F. M.
Secondo
2021-01-01

Abstract

Every year, plant diseases cause a significant loss of valuable food crops around the world. The plant and crop disease management practice implemented in order to mitigate damages have changed considerably. Today, through the application of new information and communication technologies, it is possible to predict the onset or change in the severity of diseases using modern big data analysis techniques. In this paper, we present an analysis and classification of research studies conducted over the past decade that forecast the onset of disease at a pre-symptomatic stage (i.e., symptoms not visible to the naked eye) or at an early stage. We examine the specific approaches and methods adopted, pre-processing techniques and data used, performance metrics, and expected results, highlighting the issues encountered. The results of the study reveal that this practice is still in its infancy and that many barriers need to be overcome.
2021
plant disease prediction; precision agriculture; machine learning; artificial intelligence; deep learning; food security; review
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/382848
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 41
social impact