GNSS real-time techniques and UAV photogrammetry can be alternative methods for the monitoring of sand beaches. This activity is particularly important in environments such as the Emilia-Romagna coastline. In this paper, two couples of surveys (year 2019 and 2020) performed using GNSS or a low-cost UAV equipment over a common area were compared in order to analyse: point-wise height differences, profile shapes along defined sections, and volumes variations over time. Both surveys were aligned to the same reference benchmark through GNSS measurements. The highest discrepancies between the two surveying methods (tens of cm) were found in vegetated areas and along the shoreline, otherwise, the height differences are mainly within the 10 cm level. In terms of volumes, excluding the most critical areas, differences close to zero can be found. Obtained results show that GNSS and UAV photogrammetry provides similar results, at least for quite flat terrains and when decimetre-level accuracy is required.
GNSS and photogrammetric UAV derived data for coastal monitoring: a case of study in Emilia-Romagna, Italy
Vecchi E.
;
2021-01-01
Abstract
GNSS real-time techniques and UAV photogrammetry can be alternative methods for the monitoring of sand beaches. This activity is particularly important in environments such as the Emilia-Romagna coastline. In this paper, two couples of surveys (year 2019 and 2020) performed using GNSS or a low-cost UAV equipment over a common area were compared in order to analyse: point-wise height differences, profile shapes along defined sections, and volumes variations over time. Both surveys were aligned to the same reference benchmark through GNSS measurements. The highest discrepancies between the two surveying methods (tens of cm) were found in vegetated areas and along the shoreline, otherwise, the height differences are mainly within the 10 cm level. In terms of volumes, excluding the most critical areas, differences close to zero can be found. Obtained results show that GNSS and UAV photogrammetry provides similar results, at least for quite flat terrains and when decimetre-level accuracy is required.File | Dimensione | Formato | |
---|---|---|---|
jmse-09-01194.pdf
accesso aperto
Descrizione: articolo online
Tipologia:
versione editoriale (VoR)
Dimensione
6.67 MB
Formato
Adobe PDF
|
6.67 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.