The focus of the article is on the analysis of effective elastic properties of planar Solid Oxide Fuel Cell (SOFC) devices. An ideal periodic multi-layered composite (SOFC-like) reproducing the overall properties of multi-layer SOFC devices is defined. Adopting a non-local dynamic homogenization method, explicit expressions for overall elastic moduli and inertial terms of this material are derived in terms of micro-fluctuation functions. These micro-fluctuation functions are then obtained solving the cell problems by means of finite element techniques. The effects of the temperature variation on overall elastic and inertial properties of the fuel cells are studied. Dispersion relations for acoustic waves in SOFC-like multilayered materials are derived as functions of the overall constants, and the results obtained by the proposed computational homogenization approach are compared with those provided by rigorous Floquet-Bloch theory. Finally, the influence of the temperature and of the elastic properties variation on the Bloch spectrum is investigated. © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Effective elastic properties of planar SOFCs: A non-local dynamic homogenization approach

Morini L.;
2014-01-01

Abstract

The focus of the article is on the analysis of effective elastic properties of planar Solid Oxide Fuel Cell (SOFC) devices. An ideal periodic multi-layered composite (SOFC-like) reproducing the overall properties of multi-layer SOFC devices is defined. Adopting a non-local dynamic homogenization method, explicit expressions for overall elastic moduli and inertial terms of this material are derived in terms of micro-fluctuation functions. These micro-fluctuation functions are then obtained solving the cell problems by means of finite element techniques. The effects of the temperature variation on overall elastic and inertial properties of the fuel cells are studied. Dispersion relations for acoustic waves in SOFC-like multilayered materials are derived as functions of the overall constants, and the results obtained by the proposed computational homogenization approach are compared with those provided by rigorous Floquet-Bloch theory. Finally, the influence of the temperature and of the elastic properties variation on the Bloch spectrum is investigated. © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
2014
Dispersive waves
Dynamic homogenization
Second-gradient continuum
Solid oxide fuel cells
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/384802
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact