The focus of the article is on the analysis of a semi-infinite crack at the interface between two dissimilar anisotropic elastic materials, loaded by a general asymmetrical system of forces acting on the crack faces. Recently derived symmetric and skew-symmetric weight function matrices are introduced for both plane strain and antiplane shear cracks, and used together with the fundamental reciprocal identity (Betti formula) in order to formulate the elastic fracture problem in terms of singular integral equations relating the applied loading and the resulting crack opening. The proposed compact formulation can be used to solve many problems in linear elastic fracture mechanics (for example various classic crack problems in homogeneous and heterogeneous anisotropic media, as piezoceramics or composite materials). This formulation is also fundamental in many multifield theories, where the elastic problem is coupled with other concurrent physical phenomena. (C) 2013 Elsevier Ltd. All rights reserved.

Integral identities for a semi-infinite interfacial crack in anisotropic elastic bimaterials

Morini, L
;
Radi, E
2013-01-01

Abstract

The focus of the article is on the analysis of a semi-infinite crack at the interface between two dissimilar anisotropic elastic materials, loaded by a general asymmetrical system of forces acting on the crack faces. Recently derived symmetric and skew-symmetric weight function matrices are introduced for both plane strain and antiplane shear cracks, and used together with the fundamental reciprocal identity (Betti formula) in order to formulate the elastic fracture problem in terms of singular integral equations relating the applied loading and the resulting crack opening. The proposed compact formulation can be used to solve many problems in linear elastic fracture mechanics (for example various classic crack problems in homogeneous and heterogeneous anisotropic media, as piezoceramics or composite materials). This formulation is also fundamental in many multifield theories, where the elastic problem is coupled with other concurrent physical phenomena. (C) 2013 Elsevier Ltd. All rights reserved.
2013
Interfacial crack
Stroh formalism
Weight functions
Betty Identity
Singular integral
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/384806
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 14
social impact