A new ray-tracing code named C3PO has been developed to study the propagation of arbitrary electromagnetic radio-frequency (rf) waves in magnetized toroidal plasmas. Its structure is designed for maximum flexibility regarding the choice of coordinate system and dielectric model. The versatility of this code makes it particularly suitable for integrated modeling systems. Using a coordinate system that reflects the nested structure of magnetic flux surfaces in tokamaks, fast and accurate calculations inside the plasma separatrix can be performed using analytical derivatives of a spline-Fourier interpolation of the axisymmetric toroidal MHD equilibrium. Applications to reverse field pinch magnetic configuration are also included. The effects of 3D perturbations of the axisymmetric toroidal MHD equilibrium, due to the discreteness of the magnetic coil system or plasma fluctuations in an original quasi-optical approach, are also studied. Using a RungeKuttaFehlberg method for solving the set of ordinary differential equations, the ray-tracing code is extensively benchmarked against analytical models and other codes for lower hybrid and electron cyclotron waves. © 2012 IOP Publishing Ltd.

A versatile ray-tracing code for studying rf wave propagation in toroidal magnetized plasmas

Morini L.
2012-01-01

Abstract

A new ray-tracing code named C3PO has been developed to study the propagation of arbitrary electromagnetic radio-frequency (rf) waves in magnetized toroidal plasmas. Its structure is designed for maximum flexibility regarding the choice of coordinate system and dielectric model. The versatility of this code makes it particularly suitable for integrated modeling systems. Using a coordinate system that reflects the nested structure of magnetic flux surfaces in tokamaks, fast and accurate calculations inside the plasma separatrix can be performed using analytical derivatives of a spline-Fourier interpolation of the axisymmetric toroidal MHD equilibrium. Applications to reverse field pinch magnetic configuration are also included. The effects of 3D perturbations of the axisymmetric toroidal MHD equilibrium, due to the discreteness of the magnetic coil system or plasma fluctuations in an original quasi-optical approach, are also studied. Using a RungeKuttaFehlberg method for solving the set of ordinary differential equations, the ray-tracing code is extensively benchmarked against analytical models and other codes for lower hybrid and electron cyclotron waves. © 2012 IOP Publishing Ltd.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/384810
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 59
social impact