The early prediction of onset labour is critical for avoiding the risk of death due to pregnancy delay. Low-income countries often struggle to deliver timely service to pregnant women due to a lack of infrastructure and healthcare facilities, resulting in pregnancy complications and, eventually, death. In this regard, several artificial-intelligence-based methods have been proposed based on the detection of contractions using electrohysterogram (EHG) signals. However, the forecasting of pregnancy contractions based on real-time EHG signals is a challenging task. This study proposes a novel model based on neural basis expansion analysis for interpretable time series (N-BEATS) which predicts labour based on EHG forecasting and contraction classification over a given time horizon. The publicly available TPEHG database of Physiobank was exploited in order to train and test the model, where signals from full-term pregnant women and signals recorded after 26 weeks of gestation were collected. For these signals, the 30 most commonly used classification parameters in the literature were calculated, and principal component analysis (PCA) was utilized to select the 15 most representative parameters (all the domains combined). The results show that neural basis expansion analysis for interpretable time series (N-BEATS) forecasting can forecast EHG signals through training after few iterations. Similarly, the forecasting signal’s duration is determined by the length of the recordings. We then deployed XG-Boost, which achieved the classification accuracy of 99 percent, outperforming the state-of-the-art approaches using a number of classification features greater than or equal to 15.

N-Beats as an EHG Signal Forecasting Method for Labour Prediction in Full Term Pregnancy

Pagliara S. M.;
2022-01-01

Abstract

The early prediction of onset labour is critical for avoiding the risk of death due to pregnancy delay. Low-income countries often struggle to deliver timely service to pregnant women due to a lack of infrastructure and healthcare facilities, resulting in pregnancy complications and, eventually, death. In this regard, several artificial-intelligence-based methods have been proposed based on the detection of contractions using electrohysterogram (EHG) signals. However, the forecasting of pregnancy contractions based on real-time EHG signals is a challenging task. This study proposes a novel model based on neural basis expansion analysis for interpretable time series (N-BEATS) which predicts labour based on EHG forecasting and contraction classification over a given time horizon. The publicly available TPEHG database of Physiobank was exploited in order to train and test the model, where signals from full-term pregnant women and signals recorded after 26 weeks of gestation were collected. For these signals, the 30 most commonly used classification parameters in the literature were calculated, and principal component analysis (PCA) was utilized to select the 15 most representative parameters (all the domains combined). The results show that neural basis expansion analysis for interpretable time series (N-BEATS) forecasting can forecast EHG signals through training after few iterations. Similarly, the forecasting signal’s duration is determined by the length of the recordings. We then deployed XG-Boost, which achieved the classification accuracy of 99 percent, outperforming the state-of-the-art approaches using a number of classification features greater than or equal to 15.
2022
deep learning
electrohyterogram
forecasting
labour prediction
N-BEATS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/385370
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact