The pain-relieving properties of opioids in inflammatory and neuropathic pain are heightened by hydrogen sulfide (H2S). However, whether allodynia and functional and/or emotional impairments related to osteoarthritis (OA) could be reduced by activating δ-opioid receptors (DOR) and the plausible influence of H2S on these actions has not been completely established. In female C57BL/6J mice with OA pain generated via monosodium acetate (MIA), we analyze: (i) the effects of UFP-512 (a DOR agonist), given alone and co-administered with two H2S donors, on the symptoms of allodynia, loss of grip strength (GS), and anxiodepressive-like comportment; (ii) the reversion of UFP-512 actions with naltrindole (a DOR antagonist), and (iii) the impact of UFP-512 on the expression of phosphorylated NF-kB inhibitor alpha (p-IKBα) and the antioxidant enzymes superoxide dismutase 1 (SOD-1) and glutathione sulfur transferase M1 (GSTM1); and the effects of H2S on DOR levels in the dorsal root ganglia (DRG), amygdala (AMG), and hippocampus (HIP) of MIA-injected animals. Results showed that systemic and local administration of UFP-512 dose-dependently diminished the allodynia and loss of GS caused by MIA, whose effects were potentiated by H2S and reversed by naltrindole. UFP-512 also inhibited anxiodepressive-like behaviors, normalized the overexpression of p-IKBα in DRG and HIP, and enhanced the expression of SOD-1 and GSTM1 in DRG, HIP, and/or AMG. Moreover, the increased expression of DOR triggered by H2S might support the improved analgesic actions of UFP-512 co-administered with H2S donors. This study proposes the use of DOR agonists, alone or combined with H2S donors, as a new treatment for OA pain.

The Impact of UFP-512 in Mice with Osteoarthritis Pain: The Role of Hydrogen Sulfide

Balboni, Gianfranco;
2023-01-01

Abstract

The pain-relieving properties of opioids in inflammatory and neuropathic pain are heightened by hydrogen sulfide (H2S). However, whether allodynia and functional and/or emotional impairments related to osteoarthritis (OA) could be reduced by activating δ-opioid receptors (DOR) and the plausible influence of H2S on these actions has not been completely established. In female C57BL/6J mice with OA pain generated via monosodium acetate (MIA), we analyze: (i) the effects of UFP-512 (a DOR agonist), given alone and co-administered with two H2S donors, on the symptoms of allodynia, loss of grip strength (GS), and anxiodepressive-like comportment; (ii) the reversion of UFP-512 actions with naltrindole (a DOR antagonist), and (iii) the impact of UFP-512 on the expression of phosphorylated NF-kB inhibitor alpha (p-IKBα) and the antioxidant enzymes superoxide dismutase 1 (SOD-1) and glutathione sulfur transferase M1 (GSTM1); and the effects of H2S on DOR levels in the dorsal root ganglia (DRG), amygdala (AMG), and hippocampus (HIP) of MIA-injected animals. Results showed that systemic and local administration of UFP-512 dose-dependently diminished the allodynia and loss of GS caused by MIA, whose effects were potentiated by H2S and reversed by naltrindole. UFP-512 also inhibited anxiodepressive-like behaviors, normalized the overexpression of p-IKBα in DRG and HIP, and enhanced the expression of SOD-1 and GSTM1 in DRG, HIP, and/or AMG. Moreover, the increased expression of DOR triggered by H2S might support the improved analgesic actions of UFP-512 co-administered with H2S donors. This study proposes the use of DOR agonists, alone or combined with H2S donors, as a new treatment for OA pain.
2023
Analgesia; Antioxidants; Anxiety; Depression; Osteoarthritis pain; Oxidative stress; δ-opioid receptors
File in questo prodotto:
File Dimensione Formato  
Antioxidants December 2023.pdf

accesso aperto

Tipologia: versione editoriale (VoR)
Dimensione 2.48 MB
Formato Adobe PDF
2.48 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/386943
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact