Fine-needle aspiration biopsies (FNA) represent the gold standard to exclude the malignant nature of thyroid nodules. After cytomorphology, 20-30% of cases are deemed "indeterminate for malignancy" and undergo surgery. However, after thyroidectomy, 70-80% of these nodules are benign. The identification of tools for improving FNA's diagnostic performances is explored by matrix-assisted laser-desorption ionization mass spectrometry imaging (MALDI-MSI). A clinical study was conducted in order to build a classification model for the characterization of thyroid nodules on a large cohort of 240 samples, showing that MALDI-MSI can be effective in separating areas with benign/malignant cells. The model had optimal performances in the internal validation set (n = 70), with 100.0% (95% CI = 83.2-100.0%) sensitivity and 96.0% (95% CI = 86.3-99.5%) specificity. The external validation (n = 170) showed a specificity of 82.9% (95% CI = 74.3-89.5%) and a sensitivity of 43.1% (95% CI = 30.9-56.0%). The performance of the model was hampered in the presence of poor and/or noisy spectra. Consequently, restricting the evaluation to the subset of FNAs with adequate cellularity, sensitivity improved up to 76.5% (95% CI = 58.8-89.3). Results also suggest the putative role of MALDI-MSI in routine clinical triage, with a three levels diagnostic classification that accounts for an indeterminate gray zone of nodules requiring a strict follow-up.
Cytomolecular Classification of Thyroid Nodules Using Fine-Needle Washes Aspiration Biopsies
Piga ISecondo
;
2022-01-01
Abstract
Fine-needle aspiration biopsies (FNA) represent the gold standard to exclude the malignant nature of thyroid nodules. After cytomorphology, 20-30% of cases are deemed "indeterminate for malignancy" and undergo surgery. However, after thyroidectomy, 70-80% of these nodules are benign. The identification of tools for improving FNA's diagnostic performances is explored by matrix-assisted laser-desorption ionization mass spectrometry imaging (MALDI-MSI). A clinical study was conducted in order to build a classification model for the characterization of thyroid nodules on a large cohort of 240 samples, showing that MALDI-MSI can be effective in separating areas with benign/malignant cells. The model had optimal performances in the internal validation set (n = 70), with 100.0% (95% CI = 83.2-100.0%) sensitivity and 96.0% (95% CI = 86.3-99.5%) specificity. The external validation (n = 170) showed a specificity of 82.9% (95% CI = 74.3-89.5%) and a sensitivity of 43.1% (95% CI = 30.9-56.0%). The performance of the model was hampered in the presence of poor and/or noisy spectra. Consequently, restricting the evaluation to the subset of FNAs with adequate cellularity, sensitivity improved up to 76.5% (95% CI = 58.8-89.3). Results also suggest the putative role of MALDI-MSI in routine clinical triage, with a three levels diagnostic classification that accounts for an indeterminate gray zone of nodules requiring a strict follow-up.File | Dimensione | Formato | |
---|---|---|---|
Cytomolecular Classification of Thyroid Nodules Using Fine-Needle Washes Aspiration Biopsies.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
versione editoriale (VoR)
Dimensione
1.43 MB
Formato
Adobe PDF
|
1.43 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.