A novel approach for improving reproducibility of Organic Field-Effect Transistors electrical performances is proposed. The introduction of isotropic features in the layout of source and drain electrodes is employed to minimize the impact of randomly-distributed crystalline domains in the organic semiconductor film on the reproducibility of basic electrical parameters, such as threshold voltage and charge carrier mobility. A significant reduction of the standard deviation of these parameters is reported over a statistically-relevant set of devices with drop-casted semiconductor, if compared with results obtained in a standard, interdigitated transistor structure. A correlation between electrodes patterning and proposed result is demonstrated by deepening the analysis with the contribution of meniscus-assisted semiconductor printing, in order to precisely control the growth direction of crystals.

Isotropic contact patterning to improve reproducibility in organic thin-film transistors

Ricci, Pier Carlo;Bonfiglio, Annalisa;Cosseddu, Piero
2023-01-01

Abstract

A novel approach for improving reproducibility of Organic Field-Effect Transistors electrical performances is proposed. The introduction of isotropic features in the layout of source and drain electrodes is employed to minimize the impact of randomly-distributed crystalline domains in the organic semiconductor film on the reproducibility of basic electrical parameters, such as threshold voltage and charge carrier mobility. A significant reduction of the standard deviation of these parameters is reported over a statistically-relevant set of devices with drop-casted semiconductor, if compared with results obtained in a standard, interdigitated transistor structure. A correlation between electrodes patterning and proposed result is demonstrated by deepening the analysis with the contribution of meniscus-assisted semiconductor printing, in order to precisely control the growth direction of crystals.
2023
Organic field-effect transistors; Organic semiconductor; Performance reproducibility; Meniscus-assisted printing
File in questo prodotto:
File Dimensione Formato  
Isotropic contact patterning to improve reproducibility in organic thin-film transistors_2023.pdf

accesso aperto

Descrizione: articolo online
Tipologia: versione editoriale
Dimensione 1.82 MB
Formato Adobe PDF
1.82 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/389775
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact