In this manuscript, we report on a novel architecture for the fabrication of highly sensitive multimodal tactile transducers, for the simultaneous detection of temperature and force. Such devices are based on a flexible Organic Charge Modulated Field Effect Transistor (OCMFET) coupled with a pyro/piezoelectric element, namely a commercial film of poly-vinylene difluoride (PVDF). The reduction of the channel length, obtained by employing a low-resolution vertical channel architecture, allowed to maximize the ratio between the sensing area and the transistor's channel area, a technological approach that allows to considerably enhance both temperature and force sensitivity, while at the same time minimize the sensor's dimensions. Thanks to the employment of a straightforward, up-scalable, and highly reproducible fabrication process, this solution represents an interesting alternative for all those applications requiring high-density, high-sensitivity sensors such as robotics and biomedical applications.

Multimodal force and temperature tactile sensor based on a short-channel organic transistor with high sensitivity

Mascia, Antonello
;
Spanu, Andrea;Bonfiglio, Annalisa;Cosseddu, Piero
2023-01-01

Abstract

In this manuscript, we report on a novel architecture for the fabrication of highly sensitive multimodal tactile transducers, for the simultaneous detection of temperature and force. Such devices are based on a flexible Organic Charge Modulated Field Effect Transistor (OCMFET) coupled with a pyro/piezoelectric element, namely a commercial film of poly-vinylene difluoride (PVDF). The reduction of the channel length, obtained by employing a low-resolution vertical channel architecture, allowed to maximize the ratio between the sensing area and the transistor's channel area, a technological approach that allows to considerably enhance both temperature and force sensitivity, while at the same time minimize the sensor's dimensions. Thanks to the employment of a straightforward, up-scalable, and highly reproducible fabrication process, this solution represents an interesting alternative for all those applications requiring high-density, high-sensitivity sensors such as robotics and biomedical applications.
File in questo prodotto:
File Dimensione Formato  
A075_High sensitivity multimodal_scirep.pdf

accesso aperto

Tipologia: versione editoriale (VoR)
Dimensione 3.62 MB
Formato Adobe PDF
3.62 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/389964
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact