Masonry structures are highly vulnerable to natural hazards, therefore both traditional and composite materials have been used as reinforcements to provide different solutions. Extensive effort is done to develop appropriate techniques of assessment, that usually demand an individualised methodology of analysis to be handled through comparative studies requiring results validation. A suitable field of study is the limit analysis approach towards masonry structures, as it offers quite accurate and, more importantly, robust results. Enrichment of a limit analysis homemade code with the inclusion of cohesion and frictional behaviour at the interface resolves, in a simplified but very robust manner, the perplexing issues involved with the numerical assessment of such structures with reference to arches. The cohesion incorporation is calibrated for a variety of in-plane applications simulating the strengthening measures. Results obtained are validated with literature results and included in a comparative study between discrete numerical models that utilise different strategies.
Masonry arches simulations using cohesion parameter as code enrichment for limit analysis approach
Reccia E.;
2023-01-01
Abstract
Masonry structures are highly vulnerable to natural hazards, therefore both traditional and composite materials have been used as reinforcements to provide different solutions. Extensive effort is done to develop appropriate techniques of assessment, that usually demand an individualised methodology of analysis to be handled through comparative studies requiring results validation. A suitable field of study is the limit analysis approach towards masonry structures, as it offers quite accurate and, more importantly, robust results. Enrichment of a limit analysis homemade code with the inclusion of cohesion and frictional behaviour at the interface resolves, in a simplified but very robust manner, the perplexing issues involved with the numerical assessment of such structures with reference to arches. The cohesion incorporation is calibrated for a variety of in-plane applications simulating the strengthening measures. Results obtained are validated with literature results and included in a comparative study between discrete numerical models that utilise different strategies.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.