Among the most characteristic structures in historical constructions for crossing large spans are the masonry vaulted structures by utilizing their geometric stability to safely transfer the loads to supports with regard to their negligible tensile strength. The ability of masonry piers to bear such transferred stresses and safely convey them to the support is directly related to their structural integrity, as well as to a number of other factors. Using an in-house limit analysis code, a study on the crucial parameters impacting the safety level of piers under the thrust of arches is performed. Parameters such as pier texture, joint friction angle, and arch shallowness, namely, shallow, semi-circular, and pointed arches, were investigated under three load scenarios: horizontal and concentrated vertical live load applied at mid-span and quarter-span. The main findings of this work show that all studied parameters have a significant influence on the structure response. Higher friction values, sharper arches, and piers that follow the rule of art result in higher collapse multipliers. Furthermore, this work emphasizes the importance of accounting for the sliding mechanism and masonry texture, parameters that are often neglected.

Parametric analysis of masonry arches following a limit analysis approach: Influence of joint friction, pier texture, and arch shallowness

Reccia E.;
2023-01-01

Abstract

Among the most characteristic structures in historical constructions for crossing large spans are the masonry vaulted structures by utilizing their geometric stability to safely transfer the loads to supports with regard to their negligible tensile strength. The ability of masonry piers to bear such transferred stresses and safely convey them to the support is directly related to their structural integrity, as well as to a number of other factors. Using an in-house limit analysis code, a study on the crucial parameters impacting the safety level of piers under the thrust of arches is performed. Parameters such as pier texture, joint friction angle, and arch shallowness, namely, shallow, semi-circular, and pointed arches, were investigated under three load scenarios: horizontal and concentrated vertical live load applied at mid-span and quarter-span. The main findings of this work show that all studied parameters have a significant influence on the structure response. Higher friction values, sharper arches, and piers that follow the rule of art result in higher collapse multipliers. Furthermore, this work emphasizes the importance of accounting for the sliding mechanism and masonry texture, parameters that are often neglected.
2023
arch shallowness
friction
Limit analysis
no-tension contacts
pier texture
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/390826
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact