This study provides an innovative collaborative spatial decision support system (SDSS) that aims to ensure an equitable spatial distribution of healthcare services. Evaluating the equality of access to health services across different geographical areas is important, as it requires the analysis of various criteria such as the proximity of health centres and hospitals (HCHs), the quality of services offered, connectivity to primary roads, the availability of public transportation hubs, and the density and distribution patterns of HCHs. This purpose is accomplished via the use of geographic information systems (GIS) and multi-criteria decision analysis (MCDA) methods. The proposed model includes the weights of the criteria, which are determined through the ordered weighted average (OWA) and evaluated based on their ORness, which ranges from 0 to 1. Furthermore, this model is improved by the best–worst fuzzy method (F-BWM). This approach produces a spatial map that clearly shows the equity of healthcare systems in urban environments. The findings show that the maximum score observed in this study was 0.38% (with an ORness value of 1), whilst the minimum score recorded was 0.28%. In the most severe scenario (ORness = 0), over 70% of the region shows different degrees of fairness, ranging from moderate to suitable and very suitable conditions. Governments and health authorities can use this information strategically to allocate resources and address inequities in access to healthcare facilities.

Advancing Urban Healthcare Equity Analysis: Integrating Public Participation GIS with Fuzzy Best–Worst Decision-Making

Garau, Chiara
Ultimo
2024-01-01

Abstract

This study provides an innovative collaborative spatial decision support system (SDSS) that aims to ensure an equitable spatial distribution of healthcare services. Evaluating the equality of access to health services across different geographical areas is important, as it requires the analysis of various criteria such as the proximity of health centres and hospitals (HCHs), the quality of services offered, connectivity to primary roads, the availability of public transportation hubs, and the density and distribution patterns of HCHs. This purpose is accomplished via the use of geographic information systems (GIS) and multi-criteria decision analysis (MCDA) methods. The proposed model includes the weights of the criteria, which are determined through the ordered weighted average (OWA) and evaluated based on their ORness, which ranges from 0 to 1. Furthermore, this model is improved by the best–worst fuzzy method (F-BWM). This approach produces a spatial map that clearly shows the equity of healthcare systems in urban environments. The findings show that the maximum score observed in this study was 0.38% (with an ORness value of 1), whilst the minimum score recorded was 0.28%. In the most severe scenario (ORness = 0), over 70% of the region shows different degrees of fairness, ranging from moderate to suitable and very suitable conditions. Governments and health authorities can use this information strategically to allocate resources and address inequities in access to healthcare facilities.
2024
volunteered geographic information; healthcare accessibility; spatial decision support system; spatial inequalities; spatial distribution; spatial pattern
File in questo prodotto:
File Dimensione Formato  
127_Samani_etc_Garau_sustainabilit_rid.pdf

accesso aperto

Descrizione: articolo online
Tipologia: versione editoriale
Dimensione 737.69 kB
Formato Adobe PDF
737.69 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/391163
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact