The integration of artificial intelligence (AI) in educational systems has revolutionized the field of education, offering numerous benefits such as personalized learning, intelligent tutoring, and data-driven insights. However, alongside this progress, concerns have arisen about potential algorithmic disparities and performance issues in AI applications for education. This doctoral thesis addresses these concerns and aims to foster the development of AI in educational contexts that emphasize performance analysis. The thesis begins by investigating the challenges and needs of the educational community in integrating responsible practices into AI-based educational systems. Through surveys and interviews with experts in the field, real-world needs and common areas for developing more responsible AI in education are identified. According to our findings, further research delves into the analysis of student behavior in both synchronous and asynchronous learning environments. By examining patterns of student engagement and predicting student success, the thesis uncovers potential performance issues (e.g., unknown unknowns: the model is really confident of its predictions but actually wrong), emphasizing the need for nuanced approaches that consider hidden factors impacting students’ learning outcomes. By providing an integrated view of the performance analyses conducted in different learning environments, the thesis offers a comprehensive understanding of the challenges and opportunities in developing responsible AI applications for education. Ultimately, this doctoral thesis contributes to the advancement of responsible AI in education, offering insights into the complexities of algorithmic disparities and their implications. The research work presented herein serves as a guiding framework for designing and deploying AI enabled educational systems that prioritize responsibility, and improved learning experiences.
Characterizing Algorithmic Performance in Machine Learning for Education
GALICI, ROBERTA
2024-02-20
Abstract
The integration of artificial intelligence (AI) in educational systems has revolutionized the field of education, offering numerous benefits such as personalized learning, intelligent tutoring, and data-driven insights. However, alongside this progress, concerns have arisen about potential algorithmic disparities and performance issues in AI applications for education. This doctoral thesis addresses these concerns and aims to foster the development of AI in educational contexts that emphasize performance analysis. The thesis begins by investigating the challenges and needs of the educational community in integrating responsible practices into AI-based educational systems. Through surveys and interviews with experts in the field, real-world needs and common areas for developing more responsible AI in education are identified. According to our findings, further research delves into the analysis of student behavior in both synchronous and asynchronous learning environments. By examining patterns of student engagement and predicting student success, the thesis uncovers potential performance issues (e.g., unknown unknowns: the model is really confident of its predictions but actually wrong), emphasizing the need for nuanced approaches that consider hidden factors impacting students’ learning outcomes. By providing an integrated view of the performance analyses conducted in different learning environments, the thesis offers a comprehensive understanding of the challenges and opportunities in developing responsible AI applications for education. Ultimately, this doctoral thesis contributes to the advancement of responsible AI in education, offering insights into the complexities of algorithmic disparities and their implications. The research work presented herein serves as a guiding framework for designing and deploying AI enabled educational systems that prioritize responsibility, and improved learning experiences.File | Dimensione | Formato | |
---|---|---|---|
Characterizing_Algorithmic_Performance_in_Machine_Learning_for_Education.pdf
accesso aperto
Descrizione: Characterizing Algorithmic Performance in Machine Learning for Education
Tipologia:
Tesi di dottorato
Dimensione
9.05 MB
Formato
Adobe PDF
|
9.05 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.