The effect of key ecological and anthropic factors on the recruitment of the common yew (Taxus baccata L.) in Sardinia (Italy) has been analyzed. After bibliographic and cartographic research, followed by field surveys, we found 232 sites where yew grows in Sardinia (as opposed to 69 previously reported in the literature). Among them, we selected 40 sites, located in 14 different mountain chains, characterized by a number of individuals ranging from 11 to 836 adult yews with an average diameter at breast height (DBH) from 13 to 130 cm. By means of generalized linear modeling, we investigated and weighted the effect of ecological, structural, and anthropic factors on the amount of T. baccata recruitment. Our analyses showed that stand recruitment was positively correlated to shrub cover and soil moisture. In particular, shrub cover had a stronger effect, clearly showing that a thicker shrub layer, both bushy and/or spiny, corresponded to a higher number of yew seedlings and saplings. Secondarily, moister sites had a higher number of seedlings and saplings, showing that habitat suitability improved with higher humidity. On the contrary, recruitment was negatively correlated to browsing (both from livestock and wild animals). Our data confirm that the presence of a protective layer of shrubs is a crucial factor for seedling and sapling survival, mostly in relation to protection from summer drought and the browsing of large herbivores. Finally, guidelines for the conservation and restoration of T. baccata communities, referred to as the EU priority habitat 9580* (Mediterranean Taxus baccata woods), have been outlined.

Shrub Cover and Soil Moisture Affect Taxus baccata L. Regeneration at Its Southern Range

Calvia G.;Fenu G.;Fantini S.;Bacchetta G.
2023-01-01

Abstract

The effect of key ecological and anthropic factors on the recruitment of the common yew (Taxus baccata L.) in Sardinia (Italy) has been analyzed. After bibliographic and cartographic research, followed by field surveys, we found 232 sites where yew grows in Sardinia (as opposed to 69 previously reported in the literature). Among them, we selected 40 sites, located in 14 different mountain chains, characterized by a number of individuals ranging from 11 to 836 adult yews with an average diameter at breast height (DBH) from 13 to 130 cm. By means of generalized linear modeling, we investigated and weighted the effect of ecological, structural, and anthropic factors on the amount of T. baccata recruitment. Our analyses showed that stand recruitment was positively correlated to shrub cover and soil moisture. In particular, shrub cover had a stronger effect, clearly showing that a thicker shrub layer, both bushy and/or spiny, corresponded to a higher number of yew seedlings and saplings. Secondarily, moister sites had a higher number of seedlings and saplings, showing that habitat suitability improved with higher humidity. On the contrary, recruitment was negatively correlated to browsing (both from livestock and wild animals). Our data confirm that the presence of a protective layer of shrubs is a crucial factor for seedling and sapling survival, mostly in relation to protection from summer drought and the browsing of large herbivores. Finally, guidelines for the conservation and restoration of T. baccata communities, referred to as the EU priority habitat 9580* (Mediterranean Taxus baccata woods), have been outlined.
2023
EU habitat
Mediterranean
common yew
overbrowsing
recruitment
shrubs
water availability
File in questo prodotto:
File Dimensione Formato  
Taxus_plants-12-01819.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: versione editoriale
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/394844
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact