Three-dimensional printing technology holds significant potential for enhancing the flexibility and cost-efficiency of producing carbon fiber-reinforced polymer composites (CFRPs). However, it faces limitations such as challenges in achieving high surface qualityand precise dimensional accuracy and managing the distinctive anisotropic mechanical properties that it demonstrates. This study aims to explore the machinability of 3D printed PETG infused with 20% short carbon fiber and to assess the resulting surface roughness and burr formation. Employing a Design of Experiments (DoE) approach, three factors were considered: rotational speed, feed rate, and depth of cut. These factors were tested at varying levels—rotational speeds of 3000, 5500, and 8000 rpm; feed rates of 400, 600, and 800 mm/min; and depth of cut values of 0.2, 0.4, 0.6, and 0.8 mm. The evaluation of machinability relied on two key response parameters: surface roughness (Sa) determined from the milled surface and burr height measured on both sides using a roughness meter. The findings revealed a significant influence of milling parameters on both roughness and burr formation. However, the ideal conditions for minimizing roughness and reducing burr formation did not align. Furthermore, a comparative analysis was conducted between these results and the machinability of PETG under similar conditions.

Surface Quality Related to Face Milling Parameters in 3D Printed Carbon Fiber-Reinforced PETG

El Mehtedi M.;Buonadonna P.;Loi Gabriela;El Mohtadi R.;Carta Mauro;Aymerich F.
2024-01-01

Abstract

Three-dimensional printing technology holds significant potential for enhancing the flexibility and cost-efficiency of producing carbon fiber-reinforced polymer composites (CFRPs). However, it faces limitations such as challenges in achieving high surface qualityand precise dimensional accuracy and managing the distinctive anisotropic mechanical properties that it demonstrates. This study aims to explore the machinability of 3D printed PETG infused with 20% short carbon fiber and to assess the resulting surface roughness and burr formation. Employing a Design of Experiments (DoE) approach, three factors were considered: rotational speed, feed rate, and depth of cut. These factors were tested at varying levels—rotational speeds of 3000, 5500, and 8000 rpm; feed rates of 400, 600, and 800 mm/min; and depth of cut values of 0.2, 0.4, 0.6, and 0.8 mm. The evaluation of machinability relied on two key response parameters: surface roughness (Sa) determined from the milled surface and burr height measured on both sides using a roughness meter. The findings revealed a significant influence of milling parameters on both roughness and burr formation. However, the ideal conditions for minimizing roughness and reducing burr formation did not align. Furthermore, a comparative analysis was conducted between these results and the machinability of PETG under similar conditions.
2024
3D printing; PETG; carbon fiber; milling; surface quality; burr
File in questo prodotto:
File Dimensione Formato  
jcs-08-00128 (2).pdf

accesso aperto

Tipologia: versione editoriale
Dimensione 3.94 MB
Formato Adobe PDF
3.94 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/397403
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact