Liquid Argon (LAr) Time Projection Chambers (TPC) operating in double-phase can detect the nuclear recoils (NR) possibly caused by the elastic scattering of WIMP dark matter particles via light signals from both scintillation and ionization processes. In the scenario of a low-mass WIMP (< 2 GeV/c2), the energy range for the NRs would be below 20 keV, thus making it crucial to characterize the ionization response in LAr TPCs as the lone available detection channel at such low energy. The Recoil Directionality (ReD) project, within the Global Argon Dark Matter Collaboration, aims to measure the ionization yield of a LAr TPC in the recoil energy range of 2-5 keV. The measurement was performed in winter 2023 at the INFN Sezione of Catania and the analysis is ongoing.
Study of low-energy nuclear recoils in liquid argon with the ReD experiment
Atzori Corona M.;Cadeddu M.;Fiorillo G.;Franco D.;Wada M.;
2024-01-01
Abstract
Liquid Argon (LAr) Time Projection Chambers (TPC) operating in double-phase can detect the nuclear recoils (NR) possibly caused by the elastic scattering of WIMP dark matter particles via light signals from both scintillation and ionization processes. In the scenario of a low-mass WIMP (< 2 GeV/c2), the energy range for the NRs would be below 20 keV, thus making it crucial to characterize the ionization response in LAr TPCs as the lone available detection channel at such low energy. The Recoil Directionality (ReD) project, within the Global Argon Dark Matter Collaboration, aims to measure the ionization yield of a LAr TPC in the recoil energy range of 2-5 keV. The measurement was performed in winter 2023 at the INFN Sezione of Catania and the analysis is ongoing.File | Dimensione | Formato | |
---|---|---|---|
Pino_2024_J._Inst._19_C04054.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
versione editoriale
Dimensione
637.29 kB
Formato
Adobe PDF
|
637.29 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.