Trait-based ecology has already revealed main independent axes of trait variation defining trait spaces that summarize plant adaptive strategies, but often ignoring intraspecific trait variability (ITV). By using empirical ITV-level data for two independent dimensions of leaf form and function and 167 species across five habitat types (coastal dunes, forests, grasslands, heathlands, wetlands) in the Italian peninsula, we found that ITV: (i) rotated the axes of trait variation that define the trait space; (ii) increased the variance explained by these axes and (iii) affected the functional structure of the target trait space. However, the magnitude of these effects was rather small and depended on the trait and habitat type. Our results reinforce the idea that ITV is context-dependent, calling for careful extrapolations of ITV patterns across traits and spatial scales. Importantly, our study provides a framework that can be used to start integrating ITV into trait space analyses.By using empirical data for two independent dimensions of leaf form and function and 167 species across five habitat types, we show that including intraspecific trait variability in a trait space: (i) rotates the axes of trait variation of the target trait space, (ii) increases the variance explained by these axes and (iii) modifies the functional structure of the trait space. However, these effects were rather small and strongly trait- and habitat-dependent.image

Intraspecific variability of leaf form and function across habitat types

Fenu G.;Marignani M.;
2024-01-01

Abstract

Trait-based ecology has already revealed main independent axes of trait variation defining trait spaces that summarize plant adaptive strategies, but often ignoring intraspecific trait variability (ITV). By using empirical ITV-level data for two independent dimensions of leaf form and function and 167 species across five habitat types (coastal dunes, forests, grasslands, heathlands, wetlands) in the Italian peninsula, we found that ITV: (i) rotated the axes of trait variation that define the trait space; (ii) increased the variance explained by these axes and (iii) affected the functional structure of the target trait space. However, the magnitude of these effects was rather small and depended on the trait and habitat type. Our results reinforce the idea that ITV is context-dependent, calling for careful extrapolations of ITV patterns across traits and spatial scales. Importantly, our study provides a framework that can be used to start integrating ITV into trait space analyses.By using empirical data for two independent dimensions of leaf form and function and 167 species across five habitat types, we show that including intraspecific trait variability in a trait space: (i) rotates the axes of trait variation of the target trait space, (ii) increases the variance explained by these axes and (iii) modifies the functional structure of the trait space. However, these effects were rather small and strongly trait- and habitat-dependent.image
2024
functional diversity; functional traits; intraspecific trait variability; leaf area; leaf mass per unit of the leaf area; plant strategies; trait space
File in questo prodotto:
File Dimensione Formato  
2024_Ecology_Letters.pdf

accesso aperto

Tipologia: versione post-print (AAM)
Dimensione 3.74 MB
Formato Adobe PDF
3.74 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/402003
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 0
social impact