We consider the smallest subring D of R(X) containing every element of the form 1/(1 + x(2)), with x is an element of R(X). D is a Pruifer domain called the minimal Dress ring of R(X). In this paper, addressing a general open problem for Pruifer non Bezout domains, we investigate whether 2 x 2 singular matrices over D can be decomposed as products of idempotent matrices. We show some conditions that guarantee the idempotent factorization in M-2(D).

Idempotent factorization of matrices over a Prüfer domain of rational functions

Cossu L.
2022-01-01

Abstract

We consider the smallest subring D of R(X) containing every element of the form 1/(1 + x(2)), with x is an element of R(X). D is a Pruifer domain called the minimal Dress ring of R(X). In this paper, addressing a general open problem for Pruifer non Bezout domains, we investigate whether 2 x 2 singular matrices over D can be decomposed as products of idempotent matrices. We show some conditions that guarantee the idempotent factorization in M-2(D).
2022
Factorization of matrices; idempotent matrices; minimal Dress rings; Pruifer domains
File in questo prodotto:
File Dimensione Formato  
2215-Article Text-6728-1-10-20220627.pdf

accesso aperto

Tipologia: versione editoriale (VoR)
Dimensione 164.88 kB
Formato Adobe PDF
164.88 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/404666
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact