We consider the smallest subring D of R(X) containing every element of the form 1/(1 + x(2)), with x is an element of R(X). D is a Pruifer domain called the minimal Dress ring of R(X). In this paper, addressing a general open problem for Pruifer non Bezout domains, we investigate whether 2 x 2 singular matrices over D can be decomposed as products of idempotent matrices. We show some conditions that guarantee the idempotent factorization in M-2(D).
Idempotent factorization of matrices over a Prüfer domain of rational functions
Cossu L.
2022-01-01
Abstract
We consider the smallest subring D of R(X) containing every element of the form 1/(1 + x(2)), with x is an element of R(X). D is a Pruifer domain called the minimal Dress ring of R(X). In this paper, addressing a general open problem for Pruifer non Bezout domains, we investigate whether 2 x 2 singular matrices over D can be decomposed as products of idempotent matrices. We show some conditions that guarantee the idempotent factorization in M-2(D).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2215-Article Text-6728-1-10-20220627.pdf
accesso aperto
Tipologia:
versione editoriale (VoR)
Dimensione
164.88 kB
Formato
Adobe PDF
|
164.88 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.