Let D be the ring of integers of a quadratic number field Q[ √ d]. We study the factorizations of 2 × 2 matrices over D into idempotent factors. When d < 0 there exist singular matrices that do not admit idempotent factorizations, due to results by Cohn and by the authors Cozzu and Zanardo. We mainly investigate the case d > 0. We employ Vaseršte˘ın’s result that SL2(D) is generated by elementary matrices, to prove that any 2 × 2 matrix with either a null row or a null column is a product of idempotents. As a consequence, every column-row matrix admits idempotent factorizations.

Idempotent factorizations of singular 2 × 2 matrices over quadratic integer rings

Cossu, Laura;
2022-01-01

Abstract

Let D be the ring of integers of a quadratic number field Q[ √ d]. We study the factorizations of 2 × 2 matrices over D into idempotent factors. When d < 0 there exist singular matrices that do not admit idempotent factorizations, due to results by Cohn and by the authors Cozzu and Zanardo. We mainly investigate the case d > 0. We employ Vaseršte˘ın’s result that SL2(D) is generated by elementary matrices, to prove that any 2 × 2 matrix with either a null row or a null column is a product of idempotents. As a consequence, every column-row matrix admits idempotent factorizations.
2022
Idempotent factorizations of 2 × 2 matrices; quadratic rings of integers; elementary matrices
File in questo prodotto:
File Dimensione Formato  
Idempotent factorizations of singular 2 2 matrices over quadratic integer rings.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1910.01893v1.pdf

accesso aperto

Tipologia: versione pre-print
Dimensione 175.41 kB
Formato Adobe PDF
175.41 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/404667
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact