We investigate a special class of Prüfer domains, firstly introduced by Dress in 1965. The minimal Dress ring DK, of a field K, is the smallest subring of K that contains every element of the form 1/(1+x2), with x ∈ K. We show that, for some choices of K, DK may be a valuation domain, or, more generally, a Bézout domain admitting a weak algorithm. Then we focus on the minimal Dress ring D of R(X): we describe its elements, we prove that it is a Dedekind domain and we characterize its non-principal ideals. Moreover, we study the products of 2 × 2 idempotent matrices over D, a subject of particular interest for Prüfer non-Bézout domains.

Minimal Prüfer-dress rings and products of idempotent matrices

Cossu L.;
2019-01-01

Abstract

We investigate a special class of Prüfer domains, firstly introduced by Dress in 1965. The minimal Dress ring DK, of a field K, is the smallest subring of K that contains every element of the form 1/(1+x2), with x ∈ K. We show that, for some choices of K, DK may be a valuation domain, or, more generally, a Bézout domain admitting a weak algorithm. Then we focus on the minimal Dress ring D of R(X): we describe its elements, we prove that it is a Dedekind domain and we characterize its non-principal ideals. Moreover, we study the products of 2 × 2 idempotent matrices over D, a subject of particular interest for Prüfer non-Bézout domains.
2019
Factorization of matrices
Idempotent matrices
Minimal dress rings
Prüfer domains
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/404671
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact