Employing ab initio self-interaction-corrected local-spin-density calculations, we explain the nature of the ferromagnetic, metallic phase of Mn-doped CuO (an antiferromagnetic insulator when undoped), and of its concurrent transitions to a paramagnetic, insulating phase. Mn-induced donor levels enable conduction through ferromagnetically aligned Mn centers and ferromagnetic CuO planes via double exchange. In the paramagnetic insulating phase, a polaron hopping mechanism consistent with the experiments is envisaged. Our results suggest the intriguing possibility of designing double-exchange driven ferromagnetic cuprates.
Double-exchange driven ferromagnetic metal-paramagnetic insulator transition in Mn-doped CuO
FILIPPETTI, ALESSIO;FIORENTINI, VINCENZO
2006-01-01
Abstract
Employing ab initio self-interaction-corrected local-spin-density calculations, we explain the nature of the ferromagnetic, metallic phase of Mn-doped CuO (an antiferromagnetic insulator when undoped), and of its concurrent transitions to a paramagnetic, insulating phase. Mn-induced donor levels enable conduction through ferromagnetically aligned Mn centers and ferromagnetic CuO planes via double exchange. In the paramagnetic insulating phase, a polaron hopping mechanism consistent with the experiments is envisaged. Our results suggest the intriguing possibility of designing double-exchange driven ferromagnetic cuprates.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.