Nyström interpolants based on suitable anti-Gauss cubature formulae associated with the Laguerre weights are provided for the numerical solution of second-kind Fredholm integral equations defined on the first quadrant in the coordinate plane (0, ∞) × (0, ∞). The case when the right-hand side and the kernel may increase at the origin and/or at infinity is considered. Numerical tests illustrate the good performance of such interpolants.
Averaged Nyström interpolants for bivariate Fredholm integral equations on the real positive semi-axes
Fermo L.
;
2024-01-01
Abstract
Nyström interpolants based on suitable anti-Gauss cubature formulae associated with the Laguerre weights are provided for the numerical solution of second-kind Fredholm integral equations defined on the first quadrant in the coordinate plane (0, ∞) × (0, ∞). The case when the right-hand side and the kernel may increase at the origin and/or at infinity is considered. Numerical tests illustrate the good performance of such interpolants.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
pp51-65.pdf
accesso aperto
Descrizione: Manoscritto
Tipologia:
versione editoriale (VoR)
Dimensione
516.51 kB
Formato
Adobe PDF
|
516.51 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.