The advancement and proliferation of digitalization and communication infrastructure have facilitated the rise of real-time bidding markets in smart grids. In these dynamic markets, energy distribution companies and power-generating companies interact to establish energy exchange contracts based on offered prices. However, the fluctuation in power flow resulting from contract changes within the real-time bidding market introduces a potential vulnerability that malicious attackers can exploit to launch successful stealthy attacks. To enhance the smart grid resiliency against cyber-attack in the power market bidding environment, a new barrier-function adaptive finite-time trajectory tracking control is proposed in this paper. The developed controller is utilized to actively counteract and mitigate potential cyber-attacks to ensure their rejection and prevention. The stability analysis convincingly demonstrates the rapid convergence of system states within a finite time frame, empowering the system to effectively reject cyber-attacks in real-time. Test results of an IEEE test systems considering governor dead bound nonlinearity and communication time delay are presented and compared with those obtained from other methods to ensure and demonstrate the performance of proposed method. The Speedgoat real-time target machine, along with Simulink real-time, validates the effectiveness of the proposed method.
Barrier-Function Adaptive Finite-Time Trajectory Tracking Controls for Cyber Resilience in Smart Grids Under an Electricity Market Environment
EsmaeiliShayan, Mostafa;
2024-01-01
Abstract
The advancement and proliferation of digitalization and communication infrastructure have facilitated the rise of real-time bidding markets in smart grids. In these dynamic markets, energy distribution companies and power-generating companies interact to establish energy exchange contracts based on offered prices. However, the fluctuation in power flow resulting from contract changes within the real-time bidding market introduces a potential vulnerability that malicious attackers can exploit to launch successful stealthy attacks. To enhance the smart grid resiliency against cyber-attack in the power market bidding environment, a new barrier-function adaptive finite-time trajectory tracking control is proposed in this paper. The developed controller is utilized to actively counteract and mitigate potential cyber-attacks to ensure their rejection and prevention. The stability analysis convincingly demonstrates the rapid convergence of system states within a finite time frame, empowering the system to effectively reject cyber-attacks in real-time. Test results of an IEEE test systems considering governor dead bound nonlinearity and communication time delay are presented and compared with those obtained from other methods to ensure and demonstrate the performance of proposed method. The Speedgoat real-time target machine, along with Simulink real-time, validates the effectiveness of the proposed method.File | Dimensione | Formato | |
---|---|---|---|
Barrier-Function_Adaptive_Finite-Time_Trajectory_Tracking_Controls_for_Cyber_Resilience_in_Smart_Grids_Under_an_Electricity_Market_Environment.pdf
Solo gestori archivio
Descrizione: Editorial
Tipologia:
versione editoriale (VoR)
Dimensione
5.86 MB
Formato
Adobe PDF
|
5.86 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
paper7-rev.pdf
accesso aperto
Descrizione: Post print
Tipologia:
versione post-print (AAM)
Dimensione
5.29 MB
Formato
Adobe PDF
|
5.29 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.