The homologous series of gaseous C1-4 alkanes represents one of the most abundant sources of short alkyl fragments. However, their application in synthetic organic chemistry is exceedingly rare due to the challenging C–H bond cleavage, which typically demands high temperatures and pressures, thereby limiting their utility in the construction of complex organic molecules. In particular, the formation of C(sp2 )–C(sp3 ) bonds is crucial for constructing biologically active molecules, including pharmaceuticals and agrochemicals. In this study, we present the previously elusive coupling between gaseous alkanes and (hetero)aryl bromides, achieved through a combination of Hydrogen Atom Transfer (HAT) photocatalysis and nickel-catalyzed cross coupling at room temperature. Utilizing flow technology allowed us to conduct this novel coupling reaction with reduced reaction times and in a scalable fashion, rendering it practical for widespread adoption in both academia and industry. Density Functional Theory (DFT) calculations unveiled that the oxidative addition constitutes the rate-determining step, with the activation energy barrier increasing with smaller alkyl radicals. Furthermore, radical isomerization observed in propane and butane analogues could be attributed to the electronic properties of the bromoarene coupling partner, highlighting the crucial role of oxidative addition in the observed selectivity of this transformation

C1‐4 Alkylation of Aryl Bromides with Light Alkanes enabled by Metallaphotocatalysis in Flow

Luridiana, Alberto
Co-primo
;
2024-01-01

Abstract

The homologous series of gaseous C1-4 alkanes represents one of the most abundant sources of short alkyl fragments. However, their application in synthetic organic chemistry is exceedingly rare due to the challenging C–H bond cleavage, which typically demands high temperatures and pressures, thereby limiting their utility in the construction of complex organic molecules. In particular, the formation of C(sp2 )–C(sp3 ) bonds is crucial for constructing biologically active molecules, including pharmaceuticals and agrochemicals. In this study, we present the previously elusive coupling between gaseous alkanes and (hetero)aryl bromides, achieved through a combination of Hydrogen Atom Transfer (HAT) photocatalysis and nickel-catalyzed cross coupling at room temperature. Utilizing flow technology allowed us to conduct this novel coupling reaction with reduced reaction times and in a scalable fashion, rendering it practical for widespread adoption in both academia and industry. Density Functional Theory (DFT) calculations unveiled that the oxidative addition constitutes the rate-determining step, with the activation energy barrier increasing with smaller alkyl radicals. Furthermore, radical isomerization observed in propane and butane analogues could be attributed to the electronic properties of the bromoarene coupling partner, highlighting the crucial role of oxidative addition in the observed selectivity of this transformation
File in questo prodotto:
File Dimensione Formato  
Angew Chem Int Ed - 2024 - Pulcinella - C1‐4 Alkylation of Aryl Bromides with Light Alkanes enabled by.pdf

embargo fino al 28/08/2025

Tipologia: versione post-print (AAM)
Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/413643
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact