A pre-formulation study was carried out to obtain liposomal formulations of mometasone furoate as an alternative system to marketed forms of corticosteroid for the treatment of inflammatory skin lesions. Mometasone furoate was loaded in glycerosomes and glyceroethosomes, which were also modified with hyaluronic acid (glyceroethohyalurosomes). Vesicles were designed, elaborated, and characterized, and their biocompatibility, efficacy against oxidative stress and skin lesions were assessed in vitro, in human epidermal cells, and in vivo, in a mouse skin epidermal hyperplasia model. All formulations tested showed great encapsulation efficiency, nanometric size, formed monodispersed systems and a highly negative Z potential. Similar values were obtained over nine months storage at 4 degrees C, which indicates the great stability of the three types of nanoliposomes at least during the time tested. Among them, 0.1% mometasone furoate glyceroethohyalurosomes were the best formulation to protect cells against oxidative stress and their anti-inflammatory efficacy was confirmed in vivo, being even more effective than the marketed form (Elocom (R)), as the reduction in the inflammation was even similar to 15% higher than that achieved with the commercial cream. Selected formulations could be potential candidates as new vehiculation systems for mometasone furoate. The presence of hyaluronic acid in glyceroethohyalurosomes makes them the best candidates in preventing/treating skin inflammatory lesions.
New Vehiculation Systems of Mometasone Furoate for the Treatment of Inflammatory Skin Diseases
Perra M.Secondo
;
2022-01-01
Abstract
A pre-formulation study was carried out to obtain liposomal formulations of mometasone furoate as an alternative system to marketed forms of corticosteroid for the treatment of inflammatory skin lesions. Mometasone furoate was loaded in glycerosomes and glyceroethosomes, which were also modified with hyaluronic acid (glyceroethohyalurosomes). Vesicles were designed, elaborated, and characterized, and their biocompatibility, efficacy against oxidative stress and skin lesions were assessed in vitro, in human epidermal cells, and in vivo, in a mouse skin epidermal hyperplasia model. All formulations tested showed great encapsulation efficiency, nanometric size, formed monodispersed systems and a highly negative Z potential. Similar values were obtained over nine months storage at 4 degrees C, which indicates the great stability of the three types of nanoliposomes at least during the time tested. Among them, 0.1% mometasone furoate glyceroethohyalurosomes were the best formulation to protect cells against oxidative stress and their anti-inflammatory efficacy was confirmed in vivo, being even more effective than the marketed form (Elocom (R)), as the reduction in the inflammation was even similar to 15% higher than that achieved with the commercial cream. Selected formulations could be potential candidates as new vehiculation systems for mometasone furoate. The presence of hyaluronic acid in glyceroethohyalurosomes makes them the best candidates in preventing/treating skin inflammatory lesions.File | Dimensione | Formato | |
---|---|---|---|
pharmaceutics-14-02558-v2.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
versione editoriale (VoR)
Dimensione
8.11 MB
Formato
Adobe PDF
|
8.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.