In recent years, 3D printing has undergone a significant transformation, expanding beyond its initial niche applications, such as rapid prototyping and hobbyist projects. This evolution has been characterized by advancements in equipment, software, and, most notably, materials. However, the development of materials that present high-resolution and advanced tunable functionalities is still a challenge. Herein, we report the development of modular 3D-printable antimicrobial polymeric ionic liquid (PIL) scaffolds with in situ formation of copper-based nanoparticles within the polymeric matrix (Cu@PILs). A variety of formulations were specially designed and optimized to be printed by digital light processing and masked stereolithography techniques at high resolution. The antimicrobial activity as well as the biocompatibility of the different formulations was tested, changing the monomeric ionic liquid and the photoinitiator. Tailor-made objects were successfully manufactured, and as a demonstrator, a geometry compatible with a medical stent was printed.

Development of high-resolution 3D printable polymerizable ionic liquids for antimicrobial applications

Chiappone, Annalisa;
2024-01-01

Abstract

In recent years, 3D printing has undergone a significant transformation, expanding beyond its initial niche applications, such as rapid prototyping and hobbyist projects. This evolution has been characterized by advancements in equipment, software, and, most notably, materials. However, the development of materials that present high-resolution and advanced tunable functionalities is still a challenge. Herein, we report the development of modular 3D-printable antimicrobial polymeric ionic liquid (PIL) scaffolds with in situ formation of copper-based nanoparticles within the polymeric matrix (Cu@PILs). A variety of formulations were specially designed and optimized to be printed by digital light processing and masked stereolithography techniques at high resolution. The antimicrobial activity as well as the biocompatibility of the different formulations was tested, changing the monomeric ionic liquid and the photoinitiator. Tailor-made objects were successfully manufactured, and as a demonstrator, a geometry compatible with a medical stent was printed.
2024
3D printing; additive manufacturing; antimicrobials; biocompatible; digital light processing; DTI-3: Develop; polymerizable ionic liquids; stereolithography
File in questo prodotto:
File Dimensione Formato  
Publication 94 Device 2024.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: versione editoriale (VoR)
Dimensione 2.9 MB
Formato Adobe PDF
2.9 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/414604
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact