G6PD deficiency results from mutations in the X-linked G6PD gene. More than 200 variants are associated with enzyme deficiency: each one of them may either cause predisposition to haemolytic anaemia triggered by exogenous agents (class B variants), or may cause a chronic haemolytic disorder (class A variants). Genotype-phenotype correlations are subtle. We report a rare G6PD variant, discovered in a baby presenting with severe jaundice and haemolytic anaemia since birth: the mutation of this class A variant was found to be p.(Arg454Pro). Two variants affecting the same codon were already known: G6PD Union, p.(Arg454Cys), and G6PD Andalus, p.(Arg454His). Both these class B variants and our class A variant exhibit severe G6PD deficiency. By molecular dynamics simulations, we performed a comparative analysis of the three mutants and of the wild-type G6PD. We found that the tetrameric structure of the enzyme is not perturbed in any of the variants; instead, loss of the positively charged Arg residue causes marked variant-specific rearrangement of hydrogen bonds, and it influences interactions with the substrates G6P and NADP. These findings explain severe deficiency of enzyme activity and may account for p.(Arg454Pro) expressing a more severe clinical phenotype.

Pathogenic G6PD variants: Different clinical pictures arise from different missense mutations in the same codon

Kumawat, Amit
Secondo
;
2024-01-01

Abstract

G6PD deficiency results from mutations in the X-linked G6PD gene. More than 200 variants are associated with enzyme deficiency: each one of them may either cause predisposition to haemolytic anaemia triggered by exogenous agents (class B variants), or may cause a chronic haemolytic disorder (class A variants). Genotype-phenotype correlations are subtle. We report a rare G6PD variant, discovered in a baby presenting with severe jaundice and haemolytic anaemia since birth: the mutation of this class A variant was found to be p.(Arg454Pro). Two variants affecting the same codon were already known: G6PD Union, p.(Arg454Cys), and G6PD Andalus, p.(Arg454His). Both these class B variants and our class A variant exhibit severe G6PD deficiency. By molecular dynamics simulations, we performed a comparative analysis of the three mutants and of the wild-type G6PD. We found that the tetrameric structure of the enzyme is not perturbed in any of the variants; instead, loss of the positively charged Arg residue causes marked variant-specific rearrangement of hydrogen bonds, and it influences interactions with the substrates G6P and NADP. These findings explain severe deficiency of enzyme activity and may account for p.(Arg454Pro) expressing a more severe clinical phenotype.
2024
Molecular dynamics simulations
G6PD deficiency
Chronic haemolytic disorder
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/415823
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact