Let X1, X2,... be independent copies of a random vector X with values in Rd and a continuous distribution function. The random vector Xn is a complete record, if each of its components is a record. As we require X to have independent components, crucial results for univariate records clearly carry over. But there are substantial differences as well. While there are infinitely many records in the d = 1 case, they occur only finitely many times in the series if d ≥ 2. Consequently, there is a terminal complete record with probability 1. We compute the distribution of the random total number of complete records and investigate the distribution of the terminal record. For complete records, the sequence of waiting times forms a Markov chain, but unlike the univariate case now the state at ∞ is an absorbing element of the state space.

On multivariate records from random vectors with independent components

Khorrami Chokami A.
;
2018-01-01

Abstract

Let X1, X2,... be independent copies of a random vector X with values in Rd and a continuous distribution function. The random vector Xn is a complete record, if each of its components is a record. As we require X to have independent components, crucial results for univariate records clearly carry over. But there are substantial differences as well. While there are infinitely many records in the d = 1 case, they occur only finitely many times in the series if d ≥ 2. Consequently, there is a terminal complete record with probability 1. We compute the distribution of the random total number of complete records and investigate the distribution of the terminal record. For complete records, the sequence of waiting times forms a Markov chain, but unlike the univariate case now the state at ∞ is an absorbing element of the state space.
2018
complete record
Markov chain
Multivariate record
terminal record
waiting time
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/416463
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact