We study a nonlinear, nonlocal Dirichlet problem driven by the fractional p-Laplacian, involving a (p-1)-sublinear reaction. By means of a weak comparison principle we prove uniqueness of the solution. Also, comparing the problem to ’asymptotic’ weighted eigenvalue problems for the same operator, we prove a necessary and sufficient condition for the existence of a solution. Our work extends classical results due to Brezis-Oswald [7] and Diaz-Saa [11] to the nonlinear nonlocal framework.

Optimal solvability for the fractional p-Laplacian with Dirichlet conditions

Iannizzotto A.;
2024-01-01

Abstract

We study a nonlinear, nonlocal Dirichlet problem driven by the fractional p-Laplacian, involving a (p-1)-sublinear reaction. By means of a weak comparison principle we prove uniqueness of the solution. Also, comparing the problem to ’asymptotic’ weighted eigenvalue problems for the same operator, we prove a necessary and sufficient condition for the existence of a solution. Our work extends classical results due to Brezis-Oswald [7] and Diaz-Saa [11] to the nonlinear nonlocal framework.
2024
34A15
35P30
35R11 (primary)
Fractional p-Laplacian (primary)
Optimal solvability
Unique solution
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/425837
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact