Smart sensory devices, such as smart watches, scales, and blood pressure gauges, are increasingly adopted by individuals aiming to improve their health and fitness. Those devices gather extensive data about cardiovascular parameters, physical activities, sleep quality, and behavior. Thanks to data analytics and artificial intelligence algorithms, they provide insights into the health status of individuals. Derived data is used to support self-care interventions and to provide practitioners with additional health information acquired on a continuous basis. However, most of the current solutions focus on the physical dimension of health, while the mental dimension is often neglected. In this paper, we present the initial investigation of a system to recognize a wide range of psychological parameters, including behavioral inhibition/activation, anxiety, and stress, leveraging data acquired from personal healthcare devices. We experimented with the application of different supervised learning algorithms on features extracted from heart, sleep, and inertial sensor data acquired from a cohort of 21 individuals over 24 hours each. Our preliminary findings suggest that our method may yield promising outcomes in recognizing different aspects of mental well-being. However, due to the limited size of the used dataset, a more comprehensive experimental evaluation, with a broader number of participants and carried out over an extended monitoring period, is imperative to substantiate the results.
An Initial Investigation of Mental Well-being Monitoring through Personal Healthcare Devices
Massa, Silvia Maria
Primo
;Riboni, Daniele
2024-01-01
Abstract
Smart sensory devices, such as smart watches, scales, and blood pressure gauges, are increasingly adopted by individuals aiming to improve their health and fitness. Those devices gather extensive data about cardiovascular parameters, physical activities, sleep quality, and behavior. Thanks to data analytics and artificial intelligence algorithms, they provide insights into the health status of individuals. Derived data is used to support self-care interventions and to provide practitioners with additional health information acquired on a continuous basis. However, most of the current solutions focus on the physical dimension of health, while the mental dimension is often neglected. In this paper, we present the initial investigation of a system to recognize a wide range of psychological parameters, including behavioral inhibition/activation, anxiety, and stress, leveraging data acquired from personal healthcare devices. We experimented with the application of different supervised learning algorithms on features extracted from heart, sleep, and inertial sensor data acquired from a cohort of 21 individuals over 24 hours each. Our preliminary findings suggest that our method may yield promising outcomes in recognizing different aspects of mental well-being. However, due to the limited size of the used dataset, a more comprehensive experimental evaluation, with a broader number of participants and carried out over an extended monitoring period, is imperative to substantiate the results.File | Dimensione | Formato | |
---|---|---|---|
2024_HUMAD.pdf
accesso aperto
Tipologia:
versione editoriale (VoR)
Dimensione
919.49 kB
Formato
Adobe PDF
|
919.49 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.