Recently, scientists have been developing sustainable processes, and in this context, mechanochemistry is commonly associated with green chemistry for its ability to reduce waste generation from chemical reactions. The well-known acetate complex, diacetate bis(triphenylphosphine) ruthenium(II) [Ru(OAc)2(PPh3)2], is a versatile precursor for preparing active complexes for several catalytic reactions. This report presents an efficient and straightforward manual grinding protocol for the sustainable synthesis of ruthenium carboxylate complexes starting from the commercially available [RuCl2(PPh3)3] and metal carboxylates. This work represents a novel and preliminary investigation into carboxylate precursors’ alternative solventless synthesis route based on manual grinding. To our knowledge, this is the first time [Ru(OAc)2(PPh3)2] has been prepared via a mechanochemical procedure. The synthesis method has also been investigated for other alkali metal carboxylates and yields ranging from 30 to 80% were obtained. A comparison of sustainability and environmental impact between conventional solution synthesis and the grinding route has been carried out using the E-factor and Mass Productivity. While for the acetate complex E-factor and MP were only slightly better compared with the solvent method (3 vs. 4 for E-factor and ~6 vs. 5 for MP), for benzoate higher results were found (1 vs. ~4 for E-factor and 10 vs. 5 for MP).

Efficient, Facile, and Green Synthesis of Ruthenium Carboxylate Complexes by Manual Grinding

Porcheddu A.
Penultimo
Membro del Collaboration Group
;
2024-01-01

Abstract

Recently, scientists have been developing sustainable processes, and in this context, mechanochemistry is commonly associated with green chemistry for its ability to reduce waste generation from chemical reactions. The well-known acetate complex, diacetate bis(triphenylphosphine) ruthenium(II) [Ru(OAc)2(PPh3)2], is a versatile precursor for preparing active complexes for several catalytic reactions. This report presents an efficient and straightforward manual grinding protocol for the sustainable synthesis of ruthenium carboxylate complexes starting from the commercially available [RuCl2(PPh3)3] and metal carboxylates. This work represents a novel and preliminary investigation into carboxylate precursors’ alternative solventless synthesis route based on manual grinding. To our knowledge, this is the first time [Ru(OAc)2(PPh3)2] has been prepared via a mechanochemical procedure. The synthesis method has also been investigated for other alkali metal carboxylates and yields ranging from 30 to 80% were obtained. A comparison of sustainability and environmental impact between conventional solution synthesis and the grinding route has been carried out using the E-factor and Mass Productivity. While for the acetate complex E-factor and MP were only slightly better compared with the solvent method (3 vs. 4 for E-factor and ~6 vs. 5 for MP), for benzoate higher results were found (1 vs. ~4 for E-factor and 10 vs. 5 for MP).
2024
acetate
carboxylate
manual grinding
ruthenium(II) complexes
sustainable processes
File in questo prodotto:
File Dimensione Formato  
processes-12-01413.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: versione editoriale (VoR)
Dimensione 2.12 MB
Formato Adobe PDF
2.12 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/426264
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact