We report on X-ray (NICER/NuSTAR/MAXI/Swift) and radio (MeerKAT) timing and spectroscopic analysis from a 3 month monitoring campaign in 2022 of a high-intensity outburst of the dipping neutron star low-mass X-ray binary 1A 1744−361. The 0.5-6.8 keV NICER X-ray hardness-intensity and color-color diagrams of the observations throughout the outburst suggest that 1A 1744−361 spent most of its outburst in an atoll-state, but we show that the source exhibited Z-state-like properties at the peak of the outburst, similar to a small sample of other atoll-state sources. A timing analysis with NICER data revealed several instances of an ≈8 Hz quasiperiodic oscillation (QPO; fractional rms amplitudes of ∼5%) around the peak of the outburst, the first from this source, which we connect to the normal branch QPOs seen in the Z-state. Our observations of 1A 1744−361 are fully consistent with the idea of the mass accretion rate being the main distinguishing parameter between atoll- and Z-states. Radio monitoring data by MeerKAT suggests that the source was at its radio-brightest during the outburst peak, and that the source transitioned from the “island” spectral state to the “banana” state within ∼3 days of the outburst onset, launching transient jet ejecta. The observations present the strongest evidence for radio flaring, including jet ejecta, during the island-to-banana spectral state transition at low accretion rates (atoll-state). The source also exhibited Fe xxv, Fe xxvi Kα, and Kβ X-ray absorption lines, whose origins likely lie in an accretion disk atmosphere.

X-Ray and Radio Monitoring of the Neutron Star Low-mass X-Ray Binary 1A 1744-361: Quasiperiodic Oscillations, Transient Ejections, and a Disk Atmosphere

Ray;Sanna Andrea
Conceptualization
;
2024-01-01

Abstract

We report on X-ray (NICER/NuSTAR/MAXI/Swift) and radio (MeerKAT) timing and spectroscopic analysis from a 3 month monitoring campaign in 2022 of a high-intensity outburst of the dipping neutron star low-mass X-ray binary 1A 1744−361. The 0.5-6.8 keV NICER X-ray hardness-intensity and color-color diagrams of the observations throughout the outburst suggest that 1A 1744−361 spent most of its outburst in an atoll-state, but we show that the source exhibited Z-state-like properties at the peak of the outburst, similar to a small sample of other atoll-state sources. A timing analysis with NICER data revealed several instances of an ≈8 Hz quasiperiodic oscillation (QPO; fractional rms amplitudes of ∼5%) around the peak of the outburst, the first from this source, which we connect to the normal branch QPOs seen in the Z-state. Our observations of 1A 1744−361 are fully consistent with the idea of the mass accretion rate being the main distinguishing parameter between atoll- and Z-states. Radio monitoring data by MeerKAT suggests that the source was at its radio-brightest during the outburst peak, and that the source transitioned from the “island” spectral state to the “banana” state within ∼3 days of the outburst onset, launching transient jet ejecta. The observations present the strongest evidence for radio flaring, including jet ejecta, during the island-to-banana spectral state transition at low accretion rates (atoll-state). The source also exhibited Fe xxv, Fe xxvi Kα, and Kβ X-ray absorption lines, whose origins likely lie in an accretion disk atmosphere.
2024
High energy astrophysics, Transient sources, Low-mass x-ray binary stars, Neutron stars, Pulsars, Accretion, 739, 1851, 939, 1108, 1306, 14, Astrophysics - High Energy Astrophysical Phenomena
File in questo prodotto:
File Dimensione Formato  
Ng_2024_ApJ_966_232.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: versione editoriale (VoR)
Dimensione 14.46 MB
Formato Adobe PDF
14.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/426267
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact